Aufgabe
Gegeben sind die Punkte $ \RPUNKT{A}{1}{3}{4} $, $ \RPUNKT{B}{4}{6}{1} $ und $ \RPUNKT{C}{-2}{0}{-5} $ im $ \RR^3 $.
Bestimmen Sie die Größe des Winkels $ \alpha = \sphericalangle $BAC im Dreieck ABC.
$ \mathrm{M}_a $ ist die Seitenmitte der Seite $a$ im Dreieck ABC. Bestimmen Sie die Koordinaten von $ \mathrm{M_a} $ und die Länge der Seitenhalbierenden $ s_a $ im Dreieck ABC.
Bestimmen Sie die Koordinaten des Fußpunktes F der Höhe $ h_c $ im Dreieck ABC. In welchem Verhältnis teilt F die Strecke [AB]?
Begründen Sie, dass $ \RPUNKT{S}{1}{3}{1} $ der Schnittpunkt von $s_a$ und $h_c$ ist.
Wie hätte man die Koordinaten des Schnittpunktes von $s_a$ und $h_c$ rechnerisch ermitteln können?
Arbeitsblatt mit dieser Aufgabe
Analytische Geometrie - Vermischte Aufgaben
71 min, 5 Aufgaben #1919Vektoren, Geraden und Ebenen im dreidimensionalen Raum. Die Aufgaben sind bunt gemischt. Angefangen bei Winkeln und Flächeninhalten über fehlende Koordinaten hin zu Abstandsberechnungen, Seitenverhältnissen, Ebenen und sogar Kugeln.