Aufgabe

Gegeben sind die Punkte $ \RPUNKT{A}{1}{3}{4} $, $ \RPUNKT{B}{4}{6}{1} $ und $ \RPUNKT{C}{-2}{0}{-5} $ im $ \RR^3 $.

Bestimmen Sie die Größe des Winkels $ \alpha = \sphericalangle $BAC im Dreieck ABC.

$ \mathrm{M}_a $ ist die Seitenmitte der Seite $a$ im Dreieck ABC. Bestimmen Sie die Koordinaten von $ \mathrm{M_a} $ und die Länge der Seitenhalbierenden $ s_a $ im Dreieck ABC.

Bestimmen Sie die Koordinaten des Fußpunktes F der Höhe $ h_c $ im Dreieck ABC. In welchem Verhältnis teilt F die Strecke [AB]?

Begründen Sie, dass $ \RPUNKT{S}{1}{3}{1} $ der Schnittpunkt von $s_a$ und $h_c$ ist.

Wie hätte man die Koordinaten des Schnittpunktes von $s_a$ und $h_c$ rechnerisch ermitteln können?


Arbeitsblatt mit dieser Aufgabe

Analytische Geometrie - Vermischte Aufgaben

71 min, 5 Aufgaben #1919

Vektoren, Geraden und Ebenen im dreidimensionalen Raum. Die Aufgaben sind bunt gemischt. Angefangen bei Winkeln und Flächeninhalten über fehlende Koordinaten hin zu Abstandsberechnungen, Seitenverhältnissen, Ebenen und sogar Kugeln.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum