Einleitung
Die Aufgaben führen schrittweise an das Lösen von reinquadratischen Gleichungen verschiedener Formen heran.
40 Minuten Erklärungen in 5 Aufgaben von Koonys Schule.
Aufgaben
Bestimme die Lösungsmenge ohne Taschenrechner.
$x^2 = 9$
$x^2 = \frac{4}{25}$
$x^2 = -25$
$x^2 = 0$
$x^2 = \frac{196}{81}$
$x^2 = 0,81$
$x^2 = 0,04$
$x^2 = 6,25$
$x^2 = 1 \frac{15}{49}$
Bestimme die Lösungsmenge ohne Taschenrechner.
$3x^2= 48$
$\frac{1}{4}x^2= 1$
$-\frac{2}{3}x^2= -\frac{3}{8}$
$\frac{1}{2}x^2= 0$
$5x^2 = 180$
$\frac{1}{4}x^2 = 400$
$4x^2 = -24$
$12x^2 =972$
$x^2 +5= 30$
$x^2 -8= 56$
$x^2 +25= 16$
$x^2 -\frac{1}{7}= \frac{29}{49}$
$x^2 - 15 = 34$
$x^2 - \frac{9}{49} = 0$
$x^2 - 64 = 0$
$x^2 + 9 = 0$
Bestimme die Lösungsmenge.
$3x^2 - 17 = 91$
$12x^2 + 4 = 112$
$5x^2 - 1,25 = 0$
$\frac{1}{2}x^2 + \frac{1}{3} = \frac{5}{6}$
$2x^2 - \frac{4}{5} = 7,2$
$\frac{1}{3}x^2 + 2 = 5$
$\frac{16}{9}x^2 - 1 = 0$
$3x^2+10=4$
$-\frac{1}{5}x^2 + 9 = 4$
Bestimme die Lösungsmenge.
$(x-18)^2 = 625$
$(x+7)^2 = 121$
$\frac{1}{2}(x-3)^2 = 12,5$
$2(x+5)^2 -10,58 = 0$
Bestimme die Lösungsmenge. Wende zunächst eine binomische Formel an.
$x^2-10x+25 = 36$
$x^2+14x+49 =225$
$x^2 + \frac{14}{8}x + \frac{49}{64} = \frac{121}{64}$
$x^2-12x+36 = 16$
$x^2 + 18x + 81 = 0$
$x^2 - 24x + 144 = -9$
Weitere Arbeitsblätter
Wichtige Formeln im Gebäudeenergiegesetz
0 min, 4 Aufgaben #PQUVIn diesem Arbeitsblatt werden die grundlegenden Formeln zur Berechnung der wichtigsten Kennzahlen im Gebäudeenergiegesetz (GEG) vorgestellt. Sie erhalten die notwendigen Formeln und Erklärungen, um den Primärenergiebedarf, den Transmissionswärmeverlust, den Erneuerbare-Energien-Anteil und den U-Wert zu verstehen und anzuwenden. Diese Kennzahlen sind entscheidend für die Beurteilung der Energieeffizienz von Gebäuden und für die Umsetzung der Vorgaben des GEG.
Abschlussarbeit Klasse 9 ohne Taschenrechner
39 min, 8 Aufgaben #2850Aufgaben quer durch die 9. Klasse für Profis. Ohne Taschenrechner knifflige Terme berechnen. Außerdem Prozentrechnung, Flächeninhalte, Gleichungen umstellen, Funktionen, Textgleichungen, Strahlensätze und Wahrscheinlichkeiten. Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.
Übersicht e-Funktionen ableiten
69 min, 7 Aufgaben #6600Schritt für Schritt werden die verschiedenen Ableitungsregeln bei e-Funktionen gezeigt und es gibt Aufgaben mit Kombinationen dieser Regeln (Konstantenregel, Faktorregel, Produktregel, Kettenregel). Das Arbeitsblatt endet mit einer typischen Kurvendiskussion über eine e-Funktion.
Vermischte Übungen MSA
36 min, 6 Aufgaben #1290Textgleichungen, Gleichungen mit vielen Klammern, Gleichungssysteme, Textaufgaben zu Körperberechnungen und Wahrscheinlichkeiten sind Inhalt dieses Arbeitsblattes. Anspruchsvolle Aufgaben quer durchs Beet.