Einleitung
Es werden zunächst quadratische Gleichungen sowohl über die Scheitelpunktsform als auch mit der pq-Formel gelöst. Im Anschluss gibt es Textaufgaben bei denen das Wissen benötigt wird.
74 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.
Aufgaben
Löse die reinquadratischen Gleichungen.
$x^2 = 144$
$4x^2 = 1024$
$x^2+45 = 155,25$
$3x^2-7 = -20$
$5-x^2 = 5$
$7x^2+34=-3x^2+844$
Löse die Gleichungen mit Hilfe der Scheitelpunktsform.
$(x+5)^2 = 64$
$(x-3)^2+2 = 160,76$
$x^2+12x = 3,69$
$x^2+8x+16 = 196$
$x^2-3,6x=0$
$x^2-14x+49 = -50,41$
$3x^2 - 16x=101,97+5x$
$x^2+4x-3=5-3x$
Ermittle die Lösungen mit der pq-Formel.
$x^2-17x+60 = 0$
$2x^2+8x-4,2 = 0$
$x^2+7x-6 = 5-x$
$(x-12)^2 + 22 = 2354$
$x^2-5x+9 = 2x-3$
$4x^2 + 8x-3 = -2x-6x^2+204$
Das Quadrat einer Zahl, vermehrt um das Vierfache dieser Zahl ergibt 21. Für welche Zahlen gilt das?
In einem Rechteck ist die Diagonale d = 20cm. Eine Rechteckseite ist 4cm länger als die andere. Berechne die Länge der Seiten.
Verlängert man alle Seiten eines Quadrates um 4cm, so erhält man die neue Fläche von $1600\mathrm{cm}^2$. Gib die Seitenlängen der beiden Quadrate an.
Verkürzt man eine Seite eines Quadrates um 5cm und verlängert gleichzeitig die andere Seite um 10cm, so erhält man ein Rechteck mit dem Flächeninhalt $154\mathrm{cm}^2$. Berechne die Seitenlängen von Quadrat und Rechteck.
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Wahrscheinlichkeiten
14 min, 2 Aufgaben #7390Zwei originale Aufgaben der mittleren Schulabschluss Prüfung (MSA) von 2012 und 2014 aus Berlin.
Hemden mit Mängeln Abitur LK Berlin 2011
32 min, 6 Aufgaben #1720Original Abiturprüfung für den Leistungskurs aus Berlin. Die Aufgabe dreht sich rund um Hypothesentests. Kumulierte Binomialverteilung und Standardnormalverteilung, sowie gesunder Menschenverstand werden gebraucht.
Lichtkunst Abitur GK Hamburg
61 min, 6 Aufgaben #1945Abituraufgabe aus der zentralen schriftlichen Abiturprüfung 2005 im Fach Mathematik aus Hamburg für den Grundkurs mit insgesamt 100 erreichbaren Punkten.
Dezimalbrüche
85 min, 7 Aufgaben #1010In verschiedenen Aufgaben werden gebrochene Zahlen zwischen Dezimalzahlen und echten Brüchen hin und her umgewandelt.
Kegel, Pyramide, Kugel
27 min, 5 Aufgaben #9540Die Formeln zur Oberflächen- und Volumenberechnung bei Kegeln, Pyramiden und Kugel kommen zur Anwendung. Es kommt dabei u.a. auch der Dreisatz sowie die Dichte-Formel zur Anwendung.