Einleitung

Originale Arbeit einer 9. Klasse mit 60 möglichen Punkten ohne Taschenrechner zur Wurzelrechnung.

27 Minuten Erklärungen in 9 Aufgaben von Koonys Schule.

Aufgaben

1

Vereinfache so weit wie möglich.

$\left(\sqrt{2a}\right)^2$

$\sqrt{a^4}$

$\sqrt{36r^6s^2}$

2

Fasse so weit wie möglich zusammen.

$3\sqrt{2} + 2\sqrt{3} - \sqrt{2} + \sqrt{3} - 8\sqrt{2}$

$5\sqrt{a} - (7\sqrt{b} + 3\sqrt{a}) -\sqrt{a}$

3

Vereinfache mit Hilfe der Wurzelgesetze.

$\sqrt{6xy^3}\cdot\sqrt{24x^3y}$

$\frac{\sqrt{x^2y^3}}{\sqrt{y}}$

4

Vereinfache durch teilweises Wurzelziehen.

$\sqrt{45}$

$\sqrt{54xy^3}$

5

Vereinfache durch teilweises Wurzelziehen. Fasse dann so weit wie möglich zusammen.

$3\sqrt{169x} - 4\sqrt{225y} + 9\sqrt{196x} - 7\sqrt{400y}$

6

Vereinfache soweit wie möglich. (Ausmultiplizieren)

$\sqrt{4b}\cdot(\sqrt{a} + \sqrt{b})$

7

Vereinfache soweit wie möglich. (binomische Formeln)

$\left(\sqrt{5} + \sqrt{11}\right)^2$

$\left(\sqrt{6} - \sqrt{24}\right)^2$

$\left(\sqrt{12} + 3\right)\cdot\left(\sqrt{12} - 3\right)$

$\sqrt{25x^2 - 80xy + 64y^2}$

8

Mache den Nenner rational. (Beseitige die Wurzeln im Nenner.)

$\frac{8}{\sqrt{14}}$

$\frac{\sqrt{18}}{\sqrt{3} + \sqrt{2}}$

9

Bestimme die Lösungsmenge L der Wurzelgleichung. (mit Probe)
$$\sqrt{x^2 - 11} = 5$$

PDF zum Drucken

Weitere Arbeitsblätter

Teilweises Wurzelziehen - Rationalmachen des Nenners

52 min, 11 Aufgaben #0992

Aufgaben zum teilweisen, auch partiellen, Wurzelziehen mit Zahlen, Variablen und Faktorisieren. Einfache Aufgaben zum Rationalmachen des Nenners.

Klassenarbeit - Lineare Funktionen - Geradengleichungen

28 min, 5 Aufgaben #3810

Originale Klassenarbeit einer 8. Klasse aus Berlin mit 48 erreichbaren Punkten. Vorhanden sind die Zwei-Punkte-Gleichung, Punktprüfung, diverse Verständnisaufgaben zu Steigung und Achsenabschnitt und eine Anwendungsaufgabe.

Übungsaufgaben zur Stochastik

30 min, 6 Aufgaben #1654

Die ersten fünf Aufgaben fragen danach, wie viele Elemente oder Möglichkeiten es gibt, und sind damit klassische Aufgaben zu Abzählverfahren (Kombinatorik). Die letzte Aufgabe beschäftigt sich mit Baumdiagrammen und Bernoulli-Ketten.

Terme vereinfachen

35 min, 4 Aufgaben #2832

Übungen zum Vereinfachen von Termen durch die vier Grundrechenarten: Addition, Subtraktion, Multiplikation und Division. Unter anderem müssen gleichartige Glieder zusammengefasst und Klammern aufgelöst werden.

Brüche kürzen und erweitern

64 min, 6 Aufgaben #0607

Das kleine Einmaleins wird hier sehr wichtig: Brüche kürzen und erweitern. Dazu stellt dieses Arbeitsblatt Aufgaben zur Verfügung.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum