Einleitung

Klassenarbeit über ganzrationale Funktionen mit 55 erreichbaren Punkten.

49 Minuten Erklärungen in 3 Aufgaben von Koonys Schule.

Aufgaben

1

Bestimmen sie die Lösungsmenge der Gleichung $ x^3 + 3x^2 - 13x - 15 = 0 $.

2

Gegeben sei die Funktion $ f(x) = x^4 - 5x^2 + 6 $.

Untersuchen Sie $ f $ auf Symmetrie und dem Verhalten im Unendlichen.

Ermitteln Sie alle Achsenschnittpunkte.

Skizzieren Sie mit den Ergebnissen aus a) und b) den Graph von $ f $ im Intervall [-2,5; 2,5].

Prüfen Sie mit einer Rechnung, ob der Punkt $ \EPUNKT{P}{-1}{3} $ auf dem Graphen von $ f $ liegt.

Wie kann der Graph von $ f $ verschoben werden, damit die Funktion nur noch 2 Nullstellen hat?

3

Ein Möbelhaus verkauft Aufbewahrungsschachteln. Ein Set besteht aus fünf verschieden großen Schachteln, die ineinander untergebracht werden. Die Breite der Schachteln ist immer um $ 3\,\mathrm{cm} $ kürzer als die Länge $ x $ und die Höhe ist immer halb so groß wie die Länge.



Drücken Sie die Breite $ b $ und die Höhe $ h $ in Abhängigkeit von der Länge $ x $ aus.

Zeigen Sie damit, dass die Funktion $ V(x) = \frac{1}{2}x^3 - \frac{3}{2}x^2 $ das Volumen dieser Schachteln in $ \mathrm{cm^3} $ beschreiben kann.

Welchen Grad hat $ V $? Geben Sie alle Koeffizienten an.

Skizzieren Sie den Graphen der Funktion im Intervall [-1; 4].
Ermitteln Sie dazu die Achsenschnittpunkte und verwenden Sie eine kleine Wertetabelle.

Welchen Definitionsbereich hat die Funktion bezogen auf das praktische Problem?

Markieren Sie die Stelle $ x $, ab welcher die Volumensfunktion einen Sinn ergibt und begründen Sie Ihre Meinung.

PDF zum Drucken

Weitere Arbeitsblätter

IT Vorschau-Demnächst

0 min, 4 Aufgaben #7778

Cooles Blatt.

Gartenhaus Abitur GK Berlin 2016

62 min, 6 Aufgaben #1981

Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.

Gauß Verfahren

84 min, 7 Aufgaben #1777

Für lineare Gleichungssysteme mit mehr als nur zwei Gleichungen und Unbekannten gibt es einen Algorithmus mit dem man bequemer zur Lösung kommt. Dieser wird hier zunächst gezeigt und dann bei Textaufgaben zur Anwendung gebracht.

Ebenengleichungen

22 min, 4 Aufgaben #1925

Überblick aller drei Arten von Ebenengleichungen und wie man jeweils von einer Form in die andere kommt. Paramatergleichung, Normalengleichung und Koordinantengleichungen werden alle untereinander umgeformt.

Kartenspiel Abitur GK Berlin 2016

46 min, 8 Aufgaben #1990

Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum