Einleitung
Klausurvorbereitung zu Potenzfunktionen mit Symmetrieeigenschaften, Polynomdivision, Monotonie und mittlerer Änderungsrate.
35 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Gegeben ist ein Polynom mit $f(x) = 1,25x^5-3x^3+1,1x$.
Liegt P(1 $\vert$ -1,5) auf dem Graphen?
Berechnen Sie alle Nullstellen des Polynoms.
Zeichnen Sie das Polynom in ein Koordinatensystem. Bestimmen Sie dazu auch jeweils einen Punkt zwischen den Nullstellen.
Geben Sie für die entsprechenden Intervalle die Monotonie an.
Gegeben ist das Polynom $g(x) = x^8 - 16x^6 - 5x-7$.
Prüfen Sie jeweils durch Polynomdivision, ob -4 und 1 Nullstellen der Funktion sind und begründen Sie ihre Entscheidung.
Könnte diese Funktion noch mehr Nullstellen haben? Begründen Sie ihre Entscheidung.
Betrachtungen zum Wetter.
Berechnen Sie für die Monate Mai bis Juli und Juli bis Oktober jeweils die mittlere Änderungsrate des Niederschlags mit dem Differenzenquotienten.
Machen Sie 2 bis 3 Aussagen zur Niederschlagsmenge auf der Grundlage ihrer Berechnungen.

Weitere Arbeitsblätter
Lineare Gleichungen
58 min, 5 Aufgaben #3738Einführung in das Umstellen von linearen Gleichungen. Die Aufgaben beginnen ganz einfach und werden dann nach und nach schwerer. Am Ende hat man gelernt: Klammern auflösen, links und rechts zusammenfassen, alles mit x auf die eine und alles ohne x auf die andere Seite. Zum Schluss noch durch die Zahl vor dem x teilen und fertig ist man.
Dezimalbrüche
85 min, 7 Aufgaben #1010In verschiedenen Aufgaben werden gebrochene Zahlen zwischen Dezimalzahlen und echten Brüchen hin und her umgewandelt.
Strahlensätze **
54 min, 6 Aufgaben #4182Drei Schenkel, verdrehte Skizzen, Erbsen und der Mond sowie Bergspitzen. Das Prinzip ist das Gleiche, aber die Schwierigkeit ist doch um einiges größer als sonst. Das nächste Level an Strahlensatzaufgaben sozusagen.
Ikarus Abitur GK Berlin 2016
64 min, 6 Aufgaben #1980Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.
Klassenarbeit - Rechnen mit Wurzeln
27 min, 9 Aufgaben #0993Originale Arbeit einer 9. Klasse mit 60 möglichen Punkten ohne Taschenrechner zur Wurzelrechnung.