Einleitung
Sieben verschiedene Aufgaben mit immer derselben Fragen: wann wird's maximal bzw. minimal?
Sei es ein Rechteck im Kreis, der Graph einer Funktion, eine Konservendose oder eine Marmorplatte: überall muss zuerst eine Hauptbedingung und eine Nebenbedingung aufgestellt und dann zusammen in eine Funktion gepackt werden. Letztlich wird von dieser dann jedes mal der Extrempunkt bestimmt.
72 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.
Aufgaben
Die Zahl 12 soll so in zwei Summanden zerlegt werden, dass
die Summe der Quadrate der gesuchten Summanden möglichst klein wird;
ihr Produkt maximal wird;
die Summe aus dem Quadrat des einen Summanden und dem doppelten Quadrat des anderen Summanden minimal wird.
Bestimme die Seitenlängen und den Umfang desjenigen Rechtecks, das in einem Kreis mit dem Radius $ r = 3\sqrt{2}\,\mathrm{cm}$ einbeschrieben ist und maximalen Umfang $u$ hat.
Der Graph der Funktion $ f(x) = \sqrt{r^2 - x^2} $ mit $ r > 0$ und die x-Achse schließen eine Fläche ein. In diese Fläche wird ein Rechteck so gelegt, dass die Seiten jeweils parallel zu den Koordinatenachsen verlaufen.
Bestimme die Koordinaten der Eckpunkte des Rechtecks, dessen Flächeninhalt maximal ist und gib den maximalen Flächeninhalt an.
Es sei $ f(x) = (x-3)^2 + 2,5 $ für $ 0\le x \le 3 $. Betrachtet werden sollen alle achsenparallele Rechtecke mit dem Ursprung als einen Eckpunkt und einem Punkt des Graphen als gegenüberliegenden Eckpunkt.
Berechne die Koordinaten der Eckpunkte des Rechteckes, dessen Flächeninhalt maximal ist und gib den Flächeninhalt an.
Eine Konservendose von 1 Liter Inhalt soll so bemessen sein, dass möglichst wenig Material zur Herstellung gebraucht wird. Berechnen Sie Durchmesser und Höhe.
Ein oben offenes Gefäß besteht aus dem Mantel eines Zylinders mit angesetzter Halbkugel. Die gesamte Außenfläche des Gefäßes habe einen Flächeninhalt von $ 400\,\mathrm{cm}^2 $.
Bestimme den Radius und die Höhe so, dass das Volumen des Körpers maximal wird.
Aus einer dreieckigen Marmorplatte mit x = 50cm und y = 70cm soll ein rechteckiges Stück herausgeschnitten werden.
Berechne Breite und Höhe, sodass der Flächeninhalt des Rechteckes maximal ist.
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Analytische Geometrie - Vermischte Aufgaben
71 min, 5 Aufgaben #1919Vektoren, Geraden und Ebenen im dreidimensionalen Raum. Die Aufgaben sind bunt gemischt. Angefangen bei Winkeln und Flächeninhalten über fehlende Koordinaten hin zu Abstandsberechnungen, Seitenverhältnissen, Ebenen und sogar Kugeln.
Weidezelt Abitur GK Berlin 2016
64 min, 6 Aufgaben #1611Abituraufgabe zur Analysis für den Grundkurs mit 40 erreichbaren Bewertungseinheiten aus Berlin 2016. Neben Nullstellen, Extrempunkten und Wendepunkten sind außerdem dabei: Extremalproblem, Rekonstruktion einer quadratischen Funktion und Flächenberechnung.
Textaufgaben mit mehreren Unbekannten
46 min, 11 Aufgaben #1336Elf Textaufgaben bei denen immer zunächst zwei Gleichungen mit zwei Unbekannten aufgestellt und dann gelöst werden müssen.
Terme vereinfachen
35 min, 4 Aufgaben #2832Übungen zum Vereinfachen von Termen durch die vier Grundrechenarten: Addition, Subtraktion, Multiplikation und Division. Unter anderem müssen gleichartige Glieder zusammengefasst und Klammern aufgelöst werden.
Klammern auflösen
51 min, 5 Aufgaben #3335Aufgaben zum Vereinfachen von Termen mit Klammern. Zunächst Terme mit Minusklammern, dann welche mit doppelten Klammern (doppeltes Distributivgesetz). Am Ende, so ganz nebenbei, die binomischen Formeln und der ganze Spaß rückwärts: das Ausklammern.