Einleitung

Aufgaben bei denen Nullhypothesen aufgestellt und mit Entscheidungsregeln angenommen oder verworfen werden. Es kommen einseitige und zweiseitige Signifikanztests vor.

68 Minuten Erklärungen in 5 Aufgaben von Koonys Schule.

Aufgaben

1

Herkömmliche Medikamente gegen Schlaflosigkeit wirken zu 50%. Ein neues Medikament verspricht in mehr als 50% der Anwendungen zu wirken, was anhand von 50 Patienten getestet werden soll. Festgelegt wird, dass diese Hypothese angenommen wird, wenn das neue Medikament bei mehr als 30 Patienten Erfolge erzielt.

Mit welcher Wahrscheinlichkeit wird dem Medikament eine bessere Wirkung als alten Medikamenten zugesprochen, wenn dieser Sachverhalt in Wirklichkeit gar nicht zutrifft? Mit welcher Wahrscheinlichkeit wird eine tatsächlich bessere Wirkung nicht bemerkt?

2

Die Behauptung $ H_1 $, dass mehr als 20% aller ABC-Schützen Linkshänder sind, soll anhand einer Stichprobe von 80 Kindern getestet werden. Findet man mehr als 20 Linkshänder, so wird $ H_1 $ als zutreffend eingestuft.

Wie groß ist Irrtumswahrscheinlichkeit 1. Art?

Mit welcher Wahrscheinlichkeit wird die Behauptung verworfen, wenn der wahre Anteil von Linkshändern unter allen ABC-Schützen 30% beträgt?

3

Die Wahrscheinlichkeit, dass das neue Medikament aus Aufgabe 1 als besser eingestuft wird, obwohl das nicht zutrifft, soll unter 1% liegen.

Wie muss die kritische Zahl $ K $ bei der Studie mit den 50 Patienten gewählt werden?

4

Es soll geprüft werden, ob die Gewichtsverteilung bei Münzen nach ihrer Prägung mit einer neuen Maschine ausgeglichen ist, damit keine unfairen Münzen produziert werden.

Dazu wirft man eine dieser Münzen 100-mal und zählt, wie oft Kopf kommt. Weichen die Kopfwürfe um mindestens 10 von dem zu erwartenden Wert 50 ab, stuft man die Münze als unfair ein.

Welches Signifikanzniveau ergibt sich?

Welches Signifikanzniveau ergibt sich für $ n = 80 $?

Wie groß ist der $ \beta $-Fehler, wenn $ p = 0,4 $ bzw. $ p = 0,7 $ gilt?

Wie kann durch Abänderung der Entscheidungsregel der $ \alpha $-Fehler auf unter 1% gedrückt werden?

5

Bei der letzten Wahl hat Herr Meyer 40% der Stimmen erhalten. Durch eine Umfrage von 100 Personen soll herausgefunden werden, ob sich der Stimmanteil inzwischen geändert hat. Die Wahrscheinlichkeit irrtümlicherweise auf eine Veränderung des Stimmanteils zu schließen soll maximal 20% betragen.

Welche Entscheidungsregel sollte bei der Auswertung der Umfrage befolgt werden?

PDF zum Drucken

Weitere Arbeitsblätter

Test über Vorkenntnisse zu ganzrationalen Funktionen

31 min, 4 Aufgaben #1515

Originaler Test mit 40 erreichbaren Punkten.

Studienkolleg Vektoren, SS 2017

126 min, 10 Aufgaben #1818

Übungsblatt der Hochschule Kaiserslautern, University of Applied Sciences, zum Thema Vektoren.

Terme vereinfachen

35 min, 4 Aufgaben #2832

Übungen zum Vereinfachen von Termen durch die vier Grundrechenarten: Addition, Subtraktion, Multiplikation und Division. Unter anderem müssen gleichartige Glieder zusammengefasst und Klammern aufgelöst werden.

Rechnen mit Dezimalbrüchen

58 min, 10 Aufgaben #0670

Viele Aufgaben zu den vier Hauptrechenarten mit Dezimalbrüchen. Schriftlich muss Plus, Minus, Mal und Durch benutzt werden.

Lern­kontrolle Wahr­scheinlich­keits­rechnung

36 min, 4 Aufgaben #7392

Typische Aufgaben der Wahrscheinlichkeitsrechnung für die Sekundarstufe. Mit dabei sind Ergebnismengen, Baumdiagramme und Gewinnerwartung. Natürlich auch Urnen, viele Kugeln und Lotterielose.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum