Einleitung
Verschiedene Übungen zu Ebenen.
Ebenen mit Spurgeraden zeichnen, Koordinatengleichungen von Ebenen mit verschiedenen Angaben bestimmen, Schnittgeraden, Abstand Punkt Gerade und Verständnisfragen.
52 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Zeichne die folgenden Ebenen mit Hilfe ihrer Spurgeraden in ein kartesisches Koordinatensystem ein:
E: $3x_1 + 4x_2 + 3x_3 = 12$
E: $2x_1 + 4x_2 = 8$
E: $x_2 = 3$
Bestimme eine Gleichung der Schnittgeraden der Ebenen $\mathrm{E:} x_1 - x_2 + 2x_3 = 7$ und $\mathrm{F:} -x_1 + x_2 + 2x_3 + 2 = 0$.
Gegeben seien die Gerade g und die Ebene E durch $\mathrm{g:}\,\vec{x} = \vec{a} + t\cdot \vec{r},\,\,t\in \RR $ und $\mathrm{E:}\,\left(\vec{x} - \vec{b}\right)\cdot \vec{n} = 0$.
Welche geometrische Bedeutung haben die Vektoren $\vec{a}$, $\vec{b}$, $\vec{r}$, $\vec{n}$ und $\left(\vec{x} - \vec{b}\right)$?
Welche Beziehung muss zwischen den Vektoren gelten, damit gilt
g ist parallel zu E
g ist orthogonal zu E
g liegt in E
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Mathematische Kompetenzen - Zufall
15 min, 6 Aufgaben #0008Ein Sachverhalt aus dem Themengebiet Daten und Zufall (Leitidee 5) wird in verschiedene Aufgaben gepackt, die jeweils einen Schwerpunkt bezüglich der mathematischen Kompetenzen besitzen.
Lichtkunst Abitur GK Hamburg
61 min, 6 Aufgaben #1945Abituraufgabe aus der zentralen schriftlichen Abiturprüfung 2005 im Fach Mathematik aus Hamburg für den Grundkurs mit insgesamt 100 erreichbaren Punkten.
Ebenengleichungen
22 min, 4 Aufgaben #1925Überblick aller drei Arten von Ebenengleichungen und wie man jeweils von einer Form in die andere kommt. Paramatergleichung, Normalengleichung und Koordinantengleichungen werden alle untereinander umgeformt.
Rechnen mit Brüchen
53 min, 13 Aufgaben #066013 mal 5 Aufgaben zum Addieren, Subtrahieren, Multiplizieren und Dividieren von Brüchen. Täglich etwas machen und 2 Wochen später ist man besser. :)