Einleitung
Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.
62 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Ein Gartenhaus hat als Grundfläche ein Fünfeck mit den Eckpunkten $ \RPUNKT{G_0}{0}{0}{0} $, $ \mathrm{G_1} $, $ \RPUNKT{G_2}{2}{3}{0} $, $ \mathrm{G_3} $ und $ \RPUNKT{G_4}{-1}{1}{0} $ (s. Abbildung). Das Dach des Gartenhauses ist eine quadratische Pyramide mit den Eckpunkten $ \mathrm{D_1} $, $ \mathrm{D_2} $ und $ \mathrm{D_3} $, die in 2m Höhe genau senkrecht über $ \mathrm{G_1} $, $ \mathrm{G_2} $ und $ \mathrm{G_3} $ liegen. Der vierte Eckpunkt $ \mathrm{D_4} $ liegt nicht über einem Eckpunkt der Grundfläche.
Es gilt: 1 LE = 1 m.
Geben Sie die Koordinaten der Punkte $ \mathrm{G_1} $, $ \mathrm{G_3} $ und $ \mathrm{D_2} $ an.
Weisen Sie nach, dass $ \RPUNKT{D_1}{2}{0}{2} $ auf der Geraden
$ g: \vec{x} = \RVEKTOR{c}{5}{-3}{0,8} + r\cdot \RVEKTOR{c}{1}{-1}{-0,4} $; $ r \in \RR $ liegt.
Die Dachspitze hat die Koordinaten $ \RPUNKT{S}{0,5}{1,5}{h} $ und liegt auch auf der
Geraden $ g $.
Berechnen Sie die Höhe $ h $ des Gartenhauses.
( Zur Kontrolle: $ \RPUNKT{S}{0,5}{1,5}{2,6} $.)
Die Firstkanten des Daches sind die vier Kanten der Pyramide, die sich im Punkt S treffen.
Berechnen Sie die Länge einer Firstkante und die Größe des Winkels, den zwei benachbarte Firstkanten an der Spitze S einschließen.
Das Dach soll mit Dachziegeln gedeckt werden.
Ein Paket Dachziegel reicht für $ 3,1\,\mathrm{m^2} $ Dachfläche.
Untersuchen Sie, ob drei Pakete ausreichend sind, um das gesamte Dach zu decken.
Zu einer bestimmten Tageszeit fällt das Sonnenlicht parallel zur Dachkante $ \overrightarrow{D_1 S} $ ein und erzeugt von $ \mathrm{D_1} $ und S einen gemeinsamen Schattenpunkt $ \mathrm{S_1} $ in der x-y-Ebene.
Berechnen Sie die Koordinaten von $ \mathrm{S_1} $.
( Zur Kontrolle: $ \RPUNKT{S_1}{7}{-5}{0} $.)
Der Schattenpunkt von $ \mathrm{D_2} $ ist der Punkt $ \RPUNKT{S_2}{7}{-2}{0} $.
Weisen Sie nach, dass die Schattenlinie $ \overrightarrow{S_1 S_2} $ parallel zur Dachkante $ \overrightarrow{D_1 D_2} $ verläuft.
Wählen Sie zwei geeignete Eckpunkte des Daches so aus, dass deren Schattenlinie senkrecht zu $ \overrightarrow{S_1 S_2} $ verläuft. Begründen Sie Ihre Wahl.
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Wahrscheinlichkeiten
14 min, 2 Aufgaben #7390Zwei originale Aufgaben der mittleren Schulabschluss Prüfung (MSA) von 2012 und 2014 aus Berlin.
Medikament Abitur GK Berlin 2016
53 min, 7 Aufgaben #1610Abituraufgabe zur Analysis für den Grundkurs mit 40 erreichbaren Bewertungseinheiten aus Berlin 2016.
Übungen zur Differenzialrechnung
98 min, 8 Aufgaben #1560Typische Aufgaben zur Differenzialrechnung. Also Ableiten, Nullstellen berechnen, Graphen skizzieren, Tangentengleichungen und Schnittwinkel berechnen und natürlich Hoch- und Tiefpunkte bestimmen.
Vermischte Übungen MSA
36 min, 6 Aufgaben #1290Textgleichungen, Gleichungen mit vielen Klammern, Gleichungssysteme, Textaufgaben zu Körperberechnungen und Wahrscheinlichkeiten sind Inhalt dieses Arbeitsblattes. Anspruchsvolle Aufgaben quer durchs Beet.
Übungsaufgaben Wahrscheinlichkeitsrechnung
39 min, 5 Aufgaben #1652Übungsaufgaben mit Baumdiagrammen und Abzählverfahren. Mit dabei sind das Werfen von zwei Würfeln, Urnen mit Kugeln (mit bzw. ohne zurücklegen), Kombinatorik im Modehaus und Rosinenbrötchen.