Einleitung
Original Abiturprüfung aus Berlin für den Grundkurs mit einem Glücksspielautomat.
Mit dabei war die Kombinatorik, stochastische Unabhängigkeit, Bernoulli-Ketten, mindestens-mindestens Aufgabe und ein Hypothesentest.
23 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Der Glücksspielautomat erzeugt bei jedem Spiel aus den Ziffern 1,2 und 3 eine vierstellige Ziffernfolge. Dabei erscheint unter jeder der Stellen A, B, C und D unabhängig voeinander eine der Ziffern 1, 2 oder 3 mit gleicher Wahrscheinlichkeit. Es wird einmal gespielt.

Unter $ \mathrm{E_i} $ (mit i = 1, 2, 3, 4) wird das Ereignis Die Ziffer 1 erscheint bei einem Spiel genau i-mal verstanden.
Bestimmen Sie die Wahrscheinlichkeit der Ereignisse $ \mathrm{E_1} $ und $ \mathrm{E_2} $.
(Kontrollergebnis: $ P(\mathrm{E_2}) = \frac{8}{27} $)
Berechnen Sie die Wahrscheinlichkeiten für die beiden Ereignisse.
Es erscheinen ausschließlich gleiche Ziffern.
An der Stelle B erscheint die Ziffer 1.
Untersuchen Sie, ob die Ereignisse F und G stochastisch unabhängig sind.
Bestimmen Sie die Wahrscheinlichkeit dafür, dass bei 10 Spielen keine Ziffernfolge aus $ \mathrm{E_2} $ erzeugt wird.
Berechnen Sie die Anzahl der Spiele, die man mindestens spielen muss, damit mit einer Wahrscheinlichkeit von mehr als 99,9 % wenigstens einmal eine Ziffernfolge aus $ \mathrm{E_2} $ erzeugt wird.
Der Automat soll mit einer neuen Elektronik versehen werden. Bevor er damit in Spielhallen und Gaststätten aufgestellt werden darf, muss er bei der Physikalisch-Technischen Bundesanstalt aufwändige Testes bestehen (Bauartzulassung). Es wird unter anderem untersucht, ob es sich weiterhin um ein Laplace-Gerät handelt. Dazu wird die folgende Entscheidungsregel aufgestellt:
Wenn bei 100 Spielen mindestens 22-mal und höchstens 36-mal eine Ziffernfolge aus $ \mathrm{E_2} $ erscheint, dann wird die Laplace-Wahrscheinlichkeit angenommen, andernfalls nicht.
Berechnen Sie die Wahrscheinlichkeit dafür, dass mit dieser Entscheidungsregel ein tatsächliches Laplace-Gerät irrtümlich den Test nicht besteht.
Hinweis: Sie dürfen mit $ P(\mathrm{E_2}) \approx 0,3 $ als Näherungswert rechnen.
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Alle Erklärungen sind auch in einer
Weitere Arbeitsblätter
kgV und ggT
50 min, 6 Aufgaben #0010Primfaktorzerlegung, größter gemeinsamer Teiler und kleinstes gemeinsames Vielfaches nimmt die Hälfte des Blattes ein. Die andere Hälfte sind Anwendungsaufgaben.
Textgleichungen mit Brüchen für Profis 2v3
31 min, 7 Aufgaben #1342Textaufgaben müssen gelöst werden indem man Gleichungen aufstellt bei denen Brüche vorkommen.
Abschlussarbeit Klasse 9 mit Taschenrechner
42 min, 6 Aufgaben #2853Aufgaben quer durch die 9. Klasse. Statistiken, lineare Gleichungen, Funktionen, Textgleichungen, Strahlensätze, Prozentrechnung und Flächeninhalten. Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.
Abzählverfahren
54 min, 7 Aufgaben #1650Aufgaben zur Kombinatorik mit Sitzplätzen, Fußballturnieren, Silvester und defekten Batterien. Man benötigt die Abzählverfahren (mit oder ohne Reihenfolge, mit oder ohne Wiederholung). Das Lotto-Modell und Gewinnerwartung sind auch dabei.
Klassenarbeit - Wurzelgesetze und Potenzgesetze
24 min, 6 Aufgaben #0995Originale Arbeit mit 36 erreichbaren Punkten.