Einleitung
Übungen zum Vereinfachen von Termen durch die vier Grundrechenarten: Addition, Subtraktion, Multiplikation und Division.
Unter anderem müssen gleichartige Glieder zusammengefasst und Klammern aufgelöst werden.
35 Minuten Erklärungen in 4 Aufgaben von Koonys Schule.
Aufgaben
Vereinfache die Terme.
$x+x$
$c + c+ d + d +e + d + e$
$a + b + b + b + a$
$9 \cdot 7x$
$2a \cdot 5b \cdot 7$
$12 \cdot 3b \cdot 2$
$\frac{1}{2} \cdot 4a$
$\frac{6}{7} \cdot \frac{2}{3} r$
$0,25y \cdot 1,5$
$5 \cdot (-8x)$
$(-13) \cdot (-7z)$
$(-5r) \cdot (-3s) \cdot (-7t)$
$8x : 4$
$42x : (-7)$
$-63y : (-9)$
Vereinfache die Terme.
$x \cdot x$
$r \cdot r\cdot s\cdot t\cdot t\cdot s\cdot r\cdot t$
$a^2 \cdot a^3$
$6z^2 \cdot 8z^5$
$7b \cdot (-4c) \cdot 2b^8$
$\frac{2}{3}z^2 \cdot \frac{3}{4}z^3$
$-3x^2 \cdot (-4)x^5$
$2ab\cdot 9ab$
$3x \cdot 2xy^4\cdot x^2y$
Vereinfache die Terme.
$3a + 4a$
$12a - 5a$
$4x + 7x + 5x$
$5c + 8c - 9c + 4c$
$4x + 7x + 5y + 9y$
$42y + 17z - 16y - 7z$
$\frac{2}{7} x + \frac{6}{7}x$
$\frac{4}{5}r + \frac{5}{2}r + \frac{7}{8}s + \frac{3}{4}s$
$9x - 17x$
$7a^2 + 5a^2 - 3a^2$
$3x^2 + 9x^2 + 12y^2 + 5y^2$
$x^2x^3 + 3x \cdot x^4 - 2x^5$
Multipliziere aus.
$a(b+c)$
$7(a+b)$
$(a+b)\cdot 5$
$8(r-4)$
$(z-6)\cdot 9$
$-3\cdot(x+y)$
$-4 \cdot (3-x)$
$\frac{3}{4} \cdot (r+s)$
$5(4x+3)$
$-6(8c-2)$
$2a(3x+4y)$
$(7y+z)\cdot 6x$
$7(x+y+z)$
$(r-s-4)\cdot 9$
$3a(x+8y+6z)$
$7x^2(17x-3y+5z)$
$(3a^2-7b^2-4c^2)\cdot 2abc$
$-7rs(11r^2-12rs)$
Weitere Arbeitsblätter
Analytische Geometrie - Vermischte Aufgaben
71 min, 5 Aufgaben #1919Vektoren, Geraden und Ebenen im dreidimensionalen Raum. Die Aufgaben sind bunt gemischt. Angefangen bei Winkeln und Flächeninhalten über fehlende Koordinaten hin zu Abstandsberechnungen, Seitenverhältnissen, Ebenen und sogar Kugeln.
Binomische Formeln
89 min, 11 Aufgaben #3120Alles rund um die binomischen Formeln. Voraussetzung ist das Auflösen von doppelten Klammern (doppeltes Distributivgesetz). Darauf aufbauend wird auf das Vereinfachen von Termen eingegangen bei denen die binomischen Formeln von einfach bis schwer zur Anwendung kommen. Danach wird der Spieß umgedreht und Terme mit den binomischen Formeln faktorisiert. Krönender Abschluss bilden Gleichungen bei denen man ... *trommelwirbel* ... binomische Formeln braucht.
Polynomdivision und mittlere Änderungsrate
35 min, 6 Aufgaben #1551Klausurvorbereitung zu Potenzfunktionen mit Symmetrieeigenschaften, Polynomdivision, Monotonie und mittlerer Änderungsrate.
Rechnen mit Brüchen
53 min, 13 Aufgaben #066013 mal 5 Aufgaben zum Addieren, Subtrahieren, Multiplizieren und Dividieren von Brüchen. Täglich etwas machen und 2 Wochen später ist man besser. :)
Weidezelt Abitur GK Berlin 2016
64 min, 6 Aufgaben #1611Abituraufgabe zur Analysis für den Grundkurs mit 40 erreichbaren Bewertungseinheiten aus Berlin 2016. Neben Nullstellen, Extrempunkten und Wendepunkten sind außerdem dabei: Extremalproblem, Rekonstruktion einer quadratischen Funktion und Flächenberechnung.