Einleitung
Einführung in das Umstellen von linearen Gleichungen. Die Aufgaben beginnen ganz einfach und werden dann nach und nach schwerer.
Am Ende hat man gelernt: Klammern auflösen, links und rechts zusammenfassen, alles mit x auf die eine und alles ohne x auf die andere Seite. Zum Schluss noch durch die Zahl vor dem x teilen und fertig ist man.
58 Minuten Erklärungen in 5 Aufgaben von Koonys Schule.
Aufgaben
Bestimme die Lösungsmenge.
$x + 7 = 10$
$x + 11 = 11$
$x + 25 = 11$
$x+0,6 = 1,3$
$x + \frac{2}{3} = \frac{1}{6}$
$x - 6 = 18$
$x - 5 = -5$
$x - 5 = 5$
$x - \frac{5}{6} = \frac{1}{3}$
Bestimme die Lösungsmenge
$4x = 48$
$7x = -56$
$-11x = -88$
$\frac{1}{7}x = -5$
$\frac{1}{5}x = \frac{7}{10}$
$5u = -55$
$\frac{1}{2}v = \frac{3}{4}$
$-\frac{7}{9}y = -\frac{14}{3}$
$\frac{3}{4}x = -\frac{5}{8}$
Bestimme die Lösungsmenge
$3x + 11 = 20$
$9x-7 = 11$
$17-2x = 27$
$5x + 43 = 13$
$-8x+30 = 6$
$\frac{1}{5}x - 5 = -12$
$5 = 4a - 19$
$10 - \frac{1}{3}x = 6$
$72 - 8b = 64$
Bestimme die Lösungsmenge
$2x + 7x = 45$
$5x - 3x = 18$
$7x = 4x + 15$
$9x = 39 - 4x$
$8x + 3 = 5x + 24$
$21x + 17 = 2x + 72 + 8x$
Bestimme die Lösungsmenge
$16x + 19 = 5(4 + 3x)$
$3(17 + 8x) = 70x - 87$
$15x + 7(8 + 3x) = 15x + 182$
$7x + (x+8)\cdot3 = 4x$
$4(y-3)-2y = 5(3y+1)$
$7(2z+1)+5z = 3(8z-3)$
$4x-15(x-1)=2(6-3x)$
$(4x-3)\cdot5 - 6x = -4(5+9x)$
Weitere Arbeitsblätter
Klausurvorbereitung - Analysis - NRW
16 min, 3 Aufgaben #1581Beispielaufgaben für die zentralen Klausuren aus Nordrhein-Westfalen vom Schulministerium. Es wird vor allem das Verständnis der Ableitungsfunktion geprüft. Wachstumsgeschwindigkeiten, Funktionsgleichungen von Tangenten und Skizzen kommen vor.
BBR - Vergleichsarbeit Mathematik
59 min, 14 Aufgaben #2508Die Vergleichende Arbeit 2015 im Fach Mathematik zum Erwerb der Berufsbildungsreife bzw. des Hauptschulabschlusses. Bearbeitungszeit: 90 Minuten. Zugelassene Hilfsmittel: Formelübersicht und wissenschaftlicher nicht grafikfähiger Standard-Taschenrechner.
Extremwertaufgaben
80 min, 8 Aufgaben #1597Acht verschiedene Aufgaben mit immer derselben Fragen: wann wird's maximal bzw. minimal? Sei es mit einem Schiff, in einer Spielzeugfabrik, auf einer Wiese oder als Motorradfahrer: überall muss zuerst eine Hauptbedingung und eine Nebenbedingung aufgestellt und dann zusammen in eine Funktion gepackt werden. Letztlich wird von dieser dann jedes mal der Extrempunkt bestimmt.
Einführung Terme
65 min, 8 Aufgaben #2826Erste Aufgaben zu Termen. Termwerte berechen, Terme vergleichen und Textgleichungen in beide Richtungen: sowohl Gleichungen aus Texten aufstellen aber auch Texte basierend auf Gleichungen verfassen. Die Hälfte der Aufgaben beschäftigt sich mit dem Zusammenfassen von Termen.
Quadratische Gleichungen
40 min, 5 Aufgaben #0060Die Aufgaben führen schrittweise an das Lösen von reinquadratischen Gleichungen verschiedener Formen heran.