Einleitung

Einführung in das Umstellen von linearen Gleichungen. Die Aufgaben beginnen ganz einfach und werden dann nach und nach schwerer.
Am Ende hat man gelernt: Klammern auflösen, links und rechts zusammenfassen, alles mit x auf die eine und alles ohne x auf die andere Seite. Zum Schluss noch durch die Zahl vor dem x teilen und fertig ist man.

58 Minuten Erklärungen in 5 Aufgaben von Koonys Schule.

Aufgaben

1

Bestimme die Lösungsmenge.

$x + 7 = 10$

$x + 11 = 11$

$x + 25 = 11$

$x+0,6 = 1,3$

$x + \frac{2}{3} = \frac{1}{6}$

$x - 6 = 18$

$x - 5 = -5$

$x - 5 = 5$

$x - \frac{5}{6} = \frac{1}{3}$

2

Bestimme die Lösungsmenge

$4x = 48$

$7x = -56$

$-11x = -88$

$\frac{1}{7}x = -5$

$\frac{1}{5}x = \frac{7}{10}$

$5u = -55$

$\frac{1}{2}v = \frac{3}{4}$

$-\frac{7}{9}y = -\frac{14}{3}$

$\frac{3}{4}x = -\frac{5}{8}$

3

Bestimme die Lösungsmenge

$3x + 11 = 20$

$9x-7 = 11$

$17-2x = 27$

$5x + 43 = 13$

$-8x+30 = 6$

$\frac{1}{5}x - 5 = -12$

$5 = 4a - 19$

$10 - \frac{1}{3}x = 6$

$72 - 8b = 64$

4

Bestimme die Lösungsmenge

$2x + 7x = 45$

$5x - 3x = 18$

$7x = 4x + 15$

$9x = 39 - 4x$

$8x + 3 = 5x + 24$

$21x + 17 = 2x + 72 + 8x$

5

Bestimme die Lösungsmenge

$16x + 19 = 5(4 + 3x)$

$3(17 + 8x) = 70x - 87$

$15x + 7(8 + 3x) = 15x + 182$

$7x + (x+8)\cdot3 = 4x$

$4(y-3)-2y = 5(3y+1)$

$7(2z+1)+5z = 3(8z-3)$

$4x-15(x-1)=2(6-3x)$

$(4x-3)\cdot5 - 6x = -4(5+9x)$

PDF zum Drucken

Weitere Arbeitsblätter

Abzählverfahren

54 min, 7 Aufgaben #1650

Aufgaben zur Kombinatorik mit Sitzplätzen, Fußballturnieren, Silvester und defekten Batterien. Man benötigt die Abzählverfahren (mit oder ohne Reihenfolge, mit oder ohne Wiederholung). Das Lotto-Modell und Gewinnerwartung sind auch dabei.

Wochenübung - besondere quadratische Gleichungen

89 min, 6 Aufgaben #0065

Für sechs Tage gibt es täglich 4 Aufgaben. Eine Bruchgleichung, eine biquadratische Gleichung, eine Gleichung 3. Grades ohne Absolutglied und eine zum Knobeln.

Lineare Funktionen

54 min, 6 Aufgaben #3800

Dieses Arbeitsblatt führt an lineare Funktionen heran. Weiterführend kann das Thema zum Beispiel mit Textaufgaben vertieft oder auf lineare Gleichungssysteme erweitert werden.

Gleichungen in Texten

54 min, 11 Aufgaben #1337

Zwei Gleichungen aufstellen und dann lösen. Immer. Zum Teil sehr knifflig!

Kegel, Pyramide, Kugel

27 min, 5 Aufgaben #9540

Die Formeln zur Oberflächen- und Volumenberechnung bei Kegeln, Pyramiden und Kugel kommen zur Anwendung. Es kommt dabei u.a. auch der Dreisatz sowie die Dichte-Formel zur Anwendung.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum