Einleitung
Dieses Arbeitsblatt führt an lineare Funktionen heran.
Weiterführend kann das Thema zum Beispiel mit Textaufgaben vertieft oder auf lineare Gleichungssysteme erweitert werden.
54 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Bestimme $ x $.
$ 23x + 8 + 2x = 2x + 10 $
$ 25x + 8 = 10 - 2x $
$ 8x + 3 = 5x + 54 $
$ -3x - 1 = -4x-2 $
Wandle in die Form $ y = m\cdot x + n $ um.
$ -8x + 4y = 20 $
$ 25x-5y = -15 $
$ -3x-4y = 12 $
$ \frac{3}{4}x = \frac{1}{10} - \frac{1}{8}y $
Fülle die Wertetabellen aus, zeichne die Punkte in ein Koordinatensystem und verbinde. Lies den Schnittpunkt ab.
$x$ | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
$f(x)=2x-3$ |
$x$ | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
$g(x)=-3x+7$ |
Gegeben ist eine Funktion und Punkte, die zu dieser Funktion gehören. Leider fehlt immer eine Koordinate. Berechne diese.
$ f(x) = 7x - 3 $
$ \EPUNKT{P}{-2}{y_\mathrm{P}} $, $ \EPUNKT{Q}{x_\mathrm{Q}}{11} $, $ \EPUNKT{R}{0}{y_\mathrm{R}} $
$ g(x) = -14x + 2 $
$ \EPUNKT{S}{-5}{y_\mathrm{S}} $, $ \EPUNKT{T}{x_\mathrm{T}}{-26} $, $ \EPUNKT{U}{x_\mathrm{U}}{0} $
Zeichne die zwei Funktionen in ein Koordinatensystem.
Berechne jeweils den Schnittpunkt der beiden Funktionen sowie deren Schnittpunkt mit der $ x $-Achse (Nullstelle) und $ y $-Achse.
$ f(x) = -4x + 2 $
$ g(x) = 8x - 2 $
$ h(x) = 9x + 10 $
$ k(x) = -5x - 2 $
Ein Taxifahrer verlangt für einen gefahrenen Kilometer 3€ und eine Grundgebühr von 5€.
Stelle die Kosten in Abhängigkeit der gefahrenen Kilometer graphisch dar.
Berechne den Preis für eine 12km lange Fahrt.
Wie weit kommt man mit 100€?
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Wochenübung mit Klammern und Gleichungen
29 min, 7 Aufgaben #12347 Aufgaben für 7 Tage. Es müssen Klammern aufgelöst, Terme zusammengefasst und vor allem Gleichungen gelöst werden. Dabei treten unter anderem auch mal Brüche, die binomischen Formeln und die pq-Formel mit auf.
Rechnen mit Brüchen
53 min, 13 Aufgaben #066013 mal 5 Aufgaben zum Addieren, Subtrahieren, Multiplizieren und Dividieren von Brüchen. Täglich etwas machen und 2 Wochen später ist man besser. :)
Anwendungsaufgaben Körper
13 min, 4 Aufgaben #9599Zusammengesetzte Aufgaben mit Zylindern, Kegeln und Kugeln bezüglich Volumen und Oberflächen. Kombiniert sind die Aufgaben mit Prozentrechnung, Dreisatz und Dichte.
Anwendungsaufgaben radioaktiver Zerfall
57 min, 5 Aufgaben #6543Textaufgaben über Stoffe, die exponentiell Zerfallen. Wertetabellen, Prozente und Halbwertszeiten kommen unter anderem vor. Es sind im Wesentlichen verschiedene Aufgaben zu Exponentialfunktionen deren Wachstumsfaktor kleiner als 1 ist.
Dezimalbrüche
85 min, 7 Aufgaben #1010In verschiedenen Aufgaben werden gebrochene Zahlen zwischen Dezimalzahlen und echten Brüchen hin und her umgewandelt.