Einleitung
Dieses Arbeitsblatt führt an lineare Funktionen heran.
Weiterführend kann das Thema zum Beispiel mit Textaufgaben vertieft oder auf lineare Gleichungssysteme erweitert werden.
54 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Bestimme $ x $.
$ 23x + 8 + 2x = 2x + 10 $
$ 25x + 8 = 10 - 2x $
$ 8x + 3 = 5x + 54 $
$ -3x - 1 = -4x-2 $
Wandle in die Form $ y = m\cdot x + n $ um.
$ -8x + 4y = 20 $
$ 25x-5y = -15 $
$ -3x-4y = 12 $
$ \frac{3}{4}x = \frac{1}{10} - \frac{1}{8}y $
Fülle die Wertetabellen aus, zeichne die Punkte in ein Koordinatensystem und verbinde. Lies den Schnittpunkt ab.
$x$ | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
$f(x)=2x-3$ |
$x$ | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
$g(x)=-3x+7$ |
Gegeben ist eine Funktion und Punkte, die zu dieser Funktion gehören. Leider fehlt immer eine Koordinate. Berechne diese.
$ f(x) = 7x - 3 $
$ \EPUNKT{P}{-2}{y_\mathrm{P}} $, $ \EPUNKT{Q}{x_\mathrm{Q}}{11} $, $ \EPUNKT{R}{0}{y_\mathrm{R}} $
$ g(x) = -14x + 2 $
$ \EPUNKT{S}{-5}{y_\mathrm{S}} $, $ \EPUNKT{T}{x_\mathrm{T}}{-26} $, $ \EPUNKT{U}{x_\mathrm{U}}{0} $
Zeichne die zwei Funktionen in ein Koordinatensystem.
Berechne jeweils den Schnittpunkt der beiden Funktionen sowie deren Schnittpunkt mit der $ x $-Achse (Nullstelle) und $ y $-Achse.
$ f(x) = -4x + 2 $
$ g(x) = 8x - 2 $
$ h(x) = 9x + 10 $
$ k(x) = -5x - 2 $
Ein Taxifahrer verlangt für einen gefahrenen Kilometer 3€ und eine Grundgebühr von 5€.
Stelle die Kosten in Abhängigkeit der gefahrenen Kilometer graphisch dar.
Berechne den Preis für eine 12km lange Fahrt.
Wie weit kommt man mit 100€?
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Übungen zur Differenzialrechnung
98 min, 8 Aufgaben #1560Typische Aufgaben zur Differenzialrechnung. Also Ableiten, Nullstellen berechnen, Graphen skizzieren, Tangentengleichungen und Schnittwinkel berechnen und natürlich Hoch- und Tiefpunkte bestimmen.
Ableitungsfunktion und ihre Anwendung
92 min, 12 Aufgaben #1590Aus einer Funktion macht man eine andere Funktion, die sogenannte Ableitungsfunktion. Die Aufgaben beschäftigen sich damit, wie das gemacht wird, und was man darüber hinaus mit der Ableitungsfunktion machen kann. Zum Beispiel Steigungswinkel, Schnittwinkel, Tangentengleichungen oder Berührpunkte bestimmen.
Ebenen - Übungsaufgaben
52 min, 6 Aufgaben #1933Verschiedene Übungen zu Ebenen. Ebenen mit Spurgeraden zeichnen, Koordinatengleichungen von Ebenen mit verschiedenen Angaben bestimmen, Schnittgeraden, Abstand Punkt Gerade und Verständnisfragen.
kgV und ggT
50 min, 6 Aufgaben #0010Primfaktorzerlegung, größter gemeinsamer Teiler und kleinstes gemeinsames Vielfaches nimmt die Hälfte des Blattes ein. Die andere Hälfte sind Anwendungsaufgaben.
Textgleichungen mit Brüchen für Profis 3v3
56 min, 8 Aufgaben #1343Textaufgaben müssen gelöst werden indem man Gleichungen aufstellt bei denen Brüche vorkommen.