Einleitung
Zunächst eine Vorbereitungsaufgabe. Im Anschluss Aufgaben zum Gleichsetzungsverfahren, Einsetzungsverfahren und Additionsverfahren.
Danach noch Aufgaben zu den 3 möglichen Fällen: eine Lösung, keine Lösung oder unendlich vieler Lösungen.
Am Ende noch Übungen bei denen auch Brüche vorkommen.
62 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.
Aufgaben
Vorbereitung
$ -x+2 = 2x-3 $
$ 7x + 3\cdot(-2x+3) = 14 $
$ 3x+7y-3x+2y=24+3 $
$ x = -2y + 4 $; $ y = -3 $
Gleichsetzungsverfahren
$\begin{aligned}[t]
y&=2x-11\\
y&=3x-14
\end{aligned}$
$\begin{aligned}[t]
5y&=2x-1\\
5y&=3x-6
\end{aligned}$
$\begin{aligned}[t]
3p-2q&=11\\
2p-6q&=-12
\end{aligned}$
Einsetzungsverfahren
$\begin{aligned}[t]
5x+y&=2\\
y&=7x-22
\end{aligned}$
$\begin{aligned}[t]
7x-3y&=17\\
x&=4y+6
\end{aligned}$
$\begin{aligned}[t]
-4x+7y&=-1\\
7y&=-x+19
\end{aligned}$
Additionsverfahren
$\begin{aligned}[t]
-4x+6y&=14\\
4x+3y&=-5
\end{aligned}$
$\begin{aligned}[t]
-x-5y&=-17\\
7x+5y&=-1
\end{aligned}$
$\begin{aligned}[t]
2x-3y&=-13\\
5x+2y&=-4
\end{aligned}$
3 Fälle
eine Lösung
$\begin{aligned}[t]
2x-4y&=-2\\
3x+y&=11
\end{aligned}$
keine Lösung
$\begin{aligned}[t]
-x+2y&=4\\
2x-4y&=6
\end{aligned}$
unendlich Lösungen
$\begin{aligned}[t]
2x+y&=-4\\
-6x-3y&=12
\end{aligned}$
$\begin{aligned}[t]
6x+4y&=4\\
9x+6y&=5
\end{aligned}$
$\begin{aligned}[t]
x+y&=2\\
9x+4y&=23
\end{aligned}$
$\begin{aligned}[t]
4x-2y&=14\\
6x-3y&=21
\end{aligned}$
Übungen
$\begin{aligned}[t]
5y&=\frac{1}{2}x+\frac{1}{3}\\
5y&=\frac{2}{3}x+\frac{1}{6}
\end{aligned}$
$\begin{aligned}[t]
13x-\frac{1}{6}y&=-5\\
\frac{1}{6}y&=5x+9
\end{aligned}$
$\begin{aligned}[t]
\frac{8}{11}x+\frac{3}{4}y&=14\\
\frac{6}{11}x-\frac{1}{2}y&=2
\end{aligned}$
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Flächensätze - Vorwissen I
31 min, 7 Aufgaben #0037Verschiedene grundlegende Aufgaben zu Flächensätze. Der Umgang mit dem für das Thema wichtigen Gleichungen, Flächen- und Winkelberechnungen, sowie erste einfache Aufgaben mit dem Satz des Pythagoras kommen dran.
Bernoulli-Ketten
43 min, 4 Aufgaben #1700Es gibt vier grundlegende Aufgabentypen bei Bernoulli-Ketten. Diese werden hier einfach straightforward geübt.
Klausur Differentialrechnung
42 min, 5 Aufgaben #1565Originale Klausur mit 38 Punkten. Das Verständnis zu den Begrifflichkeiten des Themas muss gezeigt, ein Grenzwert mit Hilfe des Differentialquotienten berechnen und Potenzfunktionen mit Ableitungsregeln differenziert (abgeleitet) werden. Zusätzlich kommt das Berührproblem und das Tangentenproblem sowie eine Anwendungsaufgabe vor.
Bernoulli-Ketten Anwendung
37 min, 4 Aufgaben #1701Anwendungsaufgaben zu Bernoulli-Ketten. Die ersten zwei Aufgaben fragen die grundlegenden Berechnungen ab. Die dritte ist vom Typ mindestens-mindestens und die vierte zeichnet sich durch eine äußert schwierige Aufgabenstellung aus. Ein kühler Kopf ist hier gefragt.
Abschlussarbeit Klasse 9 mit Taschenrechner
38 min, 3 Aufgaben #2852Aufgaben quer durch die 9. Klasse. Statistik, Diagramme, Volumenberechnungen am Kegel, Funktionen und mehr im Koordinatensystem. Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.