Einleitung
Zunächst eine Vorbereitungsaufgabe. Im Anschluss Aufgaben zum Gleichsetzungsverfahren, Einsetzungsverfahren und Additionsverfahren.
Danach noch Aufgaben zu den 3 möglichen Fällen: eine Lösung, keine Lösung oder unendlich vieler Lösungen.
Am Ende noch Übungen bei denen auch Brüche vorkommen.
62 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.
Aufgaben
Vorbereitung
$ -x+2 = 2x-3 $
$ 7x + 3\cdot(-2x+3) = 14 $
$ 3x+7y-3x+2y=24+3 $
$ x = -2y + 4 $; $ y = -3 $
Gleichsetzungsverfahren
$\begin{aligned}[t]
y&=2x-11\\
y&=3x-14
\end{aligned}$
$\begin{aligned}[t]
5y&=2x-1\\
5y&=3x-6
\end{aligned}$
$\begin{aligned}[t]
3p-2q&=11\\
2p-6q&=-12
\end{aligned}$
Einsetzungsverfahren
$\begin{aligned}[t]
5x+y&=2\\
y&=7x-22
\end{aligned}$
$\begin{aligned}[t]
7x-3y&=17\\
x&=4y+6
\end{aligned}$
$\begin{aligned}[t]
-4x+7y&=-1\\
7y&=-x+19
\end{aligned}$
Additionsverfahren
$\begin{aligned}[t]
-4x+6y&=14\\
4x+3y&=-5
\end{aligned}$
$\begin{aligned}[t]
-x-5y&=-17\\
7x+5y&=-1
\end{aligned}$
$\begin{aligned}[t]
2x-3y&=-13\\
5x+2y&=-4
\end{aligned}$
3 Fälle
eine Lösung
$\begin{aligned}[t]
2x-4y&=-2\\
3x+y&=11
\end{aligned}$
keine Lösung
$\begin{aligned}[t]
-x+2y&=4\\
2x-4y&=6
\end{aligned}$
unendlich Lösungen
$\begin{aligned}[t]
2x+y&=-4\\
-6x-3y&=12
\end{aligned}$
$\begin{aligned}[t]
6x+4y&=4\\
9x+6y&=5
\end{aligned}$
$\begin{aligned}[t]
x+y&=2\\
9x+4y&=23
\end{aligned}$
$\begin{aligned}[t]
4x-2y&=14\\
6x-3y&=21
\end{aligned}$
Übungen
$\begin{aligned}[t]
5y&=\frac{1}{2}x+\frac{1}{3}\\
5y&=\frac{2}{3}x+\frac{1}{6}
\end{aligned}$
$\begin{aligned}[t]
13x-\frac{1}{6}y&=-5\\
\frac{1}{6}y&=5x+9
\end{aligned}$
$\begin{aligned}[t]
\frac{8}{11}x+\frac{3}{4}y&=14\\
\frac{6}{11}x-\frac{1}{2}y&=2
\end{aligned}$
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Felder und Kreise - GK Klausur Physik
40 min, 3 Aufgaben #6123Originale Physik Klausur für einen Grundkurs im 2. Semester aus Berlin. 39 Punkte, 90min
Flächensätze - Vorwissen I
31 min, 7 Aufgaben #0037Verschiedene grundlegende Aufgaben zu Flächensätze. Der Umgang mit dem für das Thema wichtigen Gleichungen, Flächen- und Winkelberechnungen, sowie erste einfache Aufgaben mit dem Satz des Pythagoras kommen dran.
Klassenarbeit - Rechnen mit Wurzeln
27 min, 9 Aufgaben #0993Originale Arbeit einer 9. Klasse mit 60 möglichen Punkten ohne Taschenrechner zur Wurzelrechnung.
Binomische Formeln
89 min, 11 Aufgaben #3120Alles rund um die binomischen Formeln. Voraussetzung ist das Auflösen von doppelten Klammern (doppeltes Distributivgesetz). Darauf aufbauend wird auf das Vereinfachen von Termen eingegangen bei denen die binomischen Formeln von einfach bis schwer zur Anwendung kommen. Danach wird der Spieß umgedreht und Terme mit den binomischen Formeln faktorisiert. Krönender Abschluss bilden Gleichungen bei denen man ... *trommelwirbel* ... binomische Formeln braucht.