Einleitung

Zunächst eine Vorbereitungsaufgabe. Im Anschluss Aufgaben zum Gleichsetzungsverfahren, Einsetzungsverfahren und Additionsverfahren.
Danach noch Aufgaben zu den 3 möglichen Fällen: eine Lösung, keine Lösung oder unendlich vieler Lösungen.
Am Ende noch Übungen bei denen auch Brüche vorkommen.

62 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.

Aufgaben

1

Vorbereitung

$ -x+2 = 2x-3 $

$ 7x + 3\cdot(-2x+3) = 14 $

$ 3x+7y-3x+2y=24+3 $

$ x = -2y + 4 $; $ y = -3 $

2

Gleichsetzungsverfahren

$\begin{aligned}[t]
y&=2x-11\\
y&=3x-14
\end{aligned}$

$\begin{aligned}[t]
5y&=2x-1\\
5y&=3x-6
\end{aligned}$

$\begin{aligned}[t]
3p-2q&=11\\
2p-6q&=-12
\end{aligned}$

3

Einsetzungsverfahren

$\begin{aligned}[t]
5x+y&=2\\
y&=7x-22
\end{aligned}$

$\begin{aligned}[t]
7x-3y&=17\\
x&=4y+6
\end{aligned}$

$\begin{aligned}[t]
-4x+7y&=-1\\
7y&=-x+19
\end{aligned}$

4

Additionsverfahren

$\begin{aligned}[t]
-4x+6y&=14\\
4x+3y&=-5
\end{aligned}$

$\begin{aligned}[t]
-x-5y&=-17\\
7x+5y&=-1
\end{aligned}$

$\begin{aligned}[t]
2x-3y&=-13\\
5x+2y&=-4
\end{aligned}$

5

3 Fälle

eine Lösung

$\begin{aligned}[t]
2x-4y&=-2\\
3x+y&=11
\end{aligned}$

keine Lösung

$\begin{aligned}[t]
-x+2y&=4\\
2x-4y&=6
\end{aligned}$

unendlich Lösungen

$\begin{aligned}[t]
2x+y&=-4\\
-6x-3y&=12
\end{aligned}$

6

$\begin{aligned}[t]
6x+4y&=4\\
9x+6y&=5
\end{aligned}$

$\begin{aligned}[t]
x+y&=2\\
9x+4y&=23
\end{aligned}$

$\begin{aligned}[t]
4x-2y&=14\\
6x-3y&=21
\end{aligned}$

7

Übungen

$\begin{aligned}[t]
5y&=\frac{1}{2}x+\frac{1}{3}\\
5y&=\frac{2}{3}x+\frac{1}{6}
\end{aligned}$

$\begin{aligned}[t]
13x-\frac{1}{6}y&=-5\\
\frac{1}{6}y&=5x+9
\end{aligned}$

$\begin{aligned}[t]
\frac{8}{11}x+\frac{3}{4}y&=14\\
\frac{6}{11}x-\frac{1}{2}y&=2
\end{aligned}$

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Klasse 8 Gleichungen


Weitere Arbeitsblätter

Flächensätze - Vorwissen I

31 min, 7 Aufgaben #0037

Verschiedene grundlegende Aufgaben zu Flächensätze. Der Umgang mit dem für das Thema wichtigen Gleichungen, Flächen- und Winkelberechnungen, sowie erste einfache Aufgaben mit dem Satz des Pythagoras kommen dran.

Bernoulli-Ketten

43 min, 4 Aufgaben #1700

Es gibt vier grundlegende Aufgabentypen bei Bernoulli-Ketten. Diese werden hier einfach straightforward geübt.

Klausur Differentialrechnung

42 min, 5 Aufgaben #1565

Originale Klausur mit 38 Punkten. Das Verständnis zu den Begrifflichkeiten des Themas muss gezeigt, ein Grenzwert mit Hilfe des Differentialquotienten berechnen und Potenzfunktionen mit Ableitungsregeln differenziert (abgeleitet) werden. Zusätzlich kommt das Berührproblem und das Tangentenproblem sowie eine Anwendungsaufgabe vor.

Bernoulli-Ketten Anwendung

37 min, 4 Aufgaben #1701

Anwendungsaufgaben zu Bernoulli-Ketten. Die ersten zwei Aufgaben fragen die grundlegenden Berechnungen ab. Die dritte ist vom Typ mindestens-mindestens und die vierte zeichnet sich durch eine äußert schwierige Aufgabenstellung aus. Ein kühler Kopf ist hier gefragt.

Abschlussarbeit Klasse 9 mit Taschenrechner

38 min, 3 Aufgaben #2852

Aufgaben quer durch die 9. Klasse. Statistik, Diagramme, Volumenberechnungen am Kegel, Funktionen und mehr im Koordinatensystem. Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum