Einleitung
Aufgaben mit Elektronen und Protonen, die sich in Magnetfeldern im Kreis bewegen oder abgelenkt werden.
Die Lorentzkraft wird dabei der Zentripetalkraft oder der elektrischen Kraft gleichgesetzt.
54 Minuten Erklärungen in 4 Aufgaben von Koonys Schule.
Aufgaben
Ein Proton bewegt sich in einem homogenen Magnetfled der Flussdichte $ 2\,\mathrm{\frac{Vs}{m^2}} $ mit einer Geschwindigkeit $ v = 7,5\cdot 10^5\,\mathrm{\frac{m}{s}} $ senkrecht zu den Feldlinien.
Berechnen Sie den Radius seiner Kreisbahn.
In einem bestimmten Gebiet des interstellaren Raumes gibt es freie Elektronen mit der kinetischen Energie $ 10^{-3}\,\mathrm{eV} $, die sich auf Kreisbahnen mit dem Radius
$ r = 2,5\cdot 10^4\,\mathrm{m} $ bewegen.
Berechnen Sie die magnetische Flussdichte, die die Teilchen auf der Bahn hält.
Ein Elektron und ein Heliumkern werden mit der Geschwindigkeit $ v_E $, $ v_{He} $ in das gleiche homogene Magnetfeld geschossen. Beide Teilchen beschreiben eine Kreisbahn mit demselben Radius $ r $.
In welchem Verhältnis stehen die Geschwindigkeiten zueinander?
($ Q_{He} = 2\cdot e $, $ m_{He} = 6,6442\cdot 10^{-27}\,\mathrm{kg} $)
Kombination von E- und B-Feld
Ein Elektron der Geschwindigkeit $ \vec{v} $, $ v = 2,0\cdot 10^7\,\mathrm{\frac{m}{s}} $, soll das Blendenpaar $ B_1 $, $ B_2 $ und das elektrische Feld zwischen den Platten des Plattenkondensators ($ U = 1,0\,\mathrm{kV} $, $ d = 4,0\,\mathrm{cm} $) unabgelenkt passieren. Hierfür wird dem elektrischen Feld ein geeignetes homogenes Magnetfeld gleicher Ausdehnung überlagert.
Wie verlaufen die Feldlinien dieses Magnetfeldes?
Welchen Betrag besitzt die magnetische Flußdichte?
Wie verhält sich das Elektron, wenn es die Geschwindigkeit $ \vec{v_1} > \vec{v} $ bzw. $ \vec{v_1} < \vec{v} $ besitzt?
Kann auch ein Proton der Geschwindigkeit $ \vec{v} $ diese Anordnung unabgelenkt passieren? (Begründung!)

PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Gartenhaus Abitur GK Berlin 2016
62 min, 6 Aufgaben #1981Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.
Wurzelterme vereinfachen ohne Taschenrechner
41 min, 13 Aufgaben #0990Viele verschiedene Aufgaben zum Zusammenfassen von Wurzeltermen. Dabei werden neben den Wurzelgesetzen auch binomische Formeln benötigt.
Terme und Gleichungen - Arbeit
0 min, 9 Aufgaben #TUGAA41 Punkte Klassenarbeit für die 8. Klasse: Umfassendes Arbeitsblatt zu Termen und Gleichungen. Enthält Aufgaben zur Vereinfachung von Termen, Multiplikation, Anwendung der binomischen Formeln, Klammerauflösung, Bestimmung von Lösungsmengen und Sachaufgaben. Perfekt zur Überprüfung und Vertiefung algebraischer Fähigkeiten.
Lineare Gleichungen
58 min, 5 Aufgaben #3738Einführung in das Umstellen von linearen Gleichungen. Die Aufgaben beginnen ganz einfach und werden dann nach und nach schwerer. Am Ende hat man gelernt: Klammern auflösen, links und rechts zusammenfassen, alles mit x auf die eine und alles ohne x auf die andere Seite. Zum Schluss noch durch die Zahl vor dem x teilen und fertig ist man.
Quadratische Gleichungen
40 min, 5 Aufgaben #0060Die Aufgaben führen schrittweise an das Lösen von reinquadratischen Gleichungen verschiedener Formen heran.