Einleitung
Sinus, Kosinus und Tangens von leicht bis schwer.
Zunächst Aufgaben mit den Gleichungen und all ihren Varianten. Danach Standard-Aufgaben an rechtwinkligen Dreiecken und die zweite Hälfte sind Textaufgaben bei denen das gleiche noch einmal drankommt mit dem gewissen Etwas, das anspruchsvolle Aufgaben ausmacht.
41 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Bestimme die Werte $x$, $y$ und $z$, sowie die Winkelgrößen $\alpha$, $\beta$ und $\gamma$.
Runde auf Tausendstel.
$\sin(30^\circ) = x$
$\cos(30^\circ) = y$
$\tan(30^\circ) = z$
$\sin(\alpha) = 0,149$
$\cos(\beta) = 0,149$
$\tan(\gamma) = 0,149$
Bestimme die Unbekannte.
$\sin(44^\circ) = \frac{a}{8}$
$\cos(23^\circ) = \frac{b}{9}$
$\tan(65^\circ) = \frac{c}{7}$
$\sin(56^\circ) = \frac{4}{c_1}$
$\cos(37^\circ) = \frac{3}{c_2}$
$\tan(42^\circ) = \frac{6}{c_3}$
Berechne die fehlenden Stücke des rechtwinkligen Dreiecks ABC.
$b = 1,7\,\mathrm{cm}$, $\beta = 40^\circ$, $\alpha = 90^\circ$
$c = 3,3\,\mathrm{km}$, $a = 6,2\,\mathrm{km}$, $\beta = 90^\circ$
Eine 6,7m lange Leiter wird an einen Baum gelehnt. Der Fuß der Leiter steht dabei 2,1m vor dem Baum.
Bestimme die Größe des Neigungswinkels zwischen der Leiter und dem waagerechten Boden.
Wie weit müsste der Fuß der Leiter vom Baum entfernt sein, damit ein Neigungswinkel von $47^\circ$ vorliegt?
Eine Seilbahn überwindet auf einer Strecke von 500m eine Höhendifferenz von 130m.
Wie groß ist der Steigungswinkel?
Die Seilbahn bewegt sich mit 7$\,\frac{km}{h}$. Wie viele Minuten ist sie unterwegs?
Von einem 200m entfernten Kirchturm wird mit Hilfe eines Theodoliten der Höhenwinkel $\alpha = 47^\circ$ gemessen. Der Beobachtungspunkt liegt 1,5m höher als der Fußpunkt des Turmes.
Wie hoch ist der Turm?
Wie lang wäre eine Seilbahn vom Beobachtungspunkt zur Spitze des Kirchturms?
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Analytische Geometrie - Vermischte Aufgaben
71 min, 5 Aufgaben #1919Vektoren, Geraden und Ebenen im dreidimensionalen Raum. Die Aufgaben sind bunt gemischt. Angefangen bei Winkeln und Flächeninhalten über fehlende Koordinaten hin zu Abstandsberechnungen, Seitenverhältnissen, Ebenen und sogar Kugeln.
Quadratische Gleichungen
74 min, 7 Aufgaben #0062Es werden zunächst quadratische Gleichungen sowohl über die Scheitelpunktsform als auch mit der pq-Formel gelöst. Im Anschluss gibt es Textaufgaben bei denen das Wissen benötigt wird.
Glücksrad mit Urne - Übungsaufgabe Stochastik LK
21 min, 6 Aufgaben #1710Eine Übungsaufgabe, die Urne und Glücksrad kombiniert. Nebst Baumdiagrammen, Bernoulli und der summierten Binomialverteilung werden auch Gewinnerwartung und Prozentrechnung beim Kreis benötigt.
Übungsaufgaben Wahrscheinlichkeitsrechnung
39 min, 5 Aufgaben #1652Übungsaufgaben mit Baumdiagrammen und Abzählverfahren. Mit dabei sind das Werfen von zwei Würfeln, Urnen mit Kugeln (mit bzw. ohne zurücklegen), Kombinatorik im Modehaus und Rosinenbrötchen.
Wichtige Formeln im Gebäudeenergiegesetz
0 min, 4 Aufgaben #PQUVIn diesem Arbeitsblatt werden die grundlegenden Formeln zur Berechnung der wichtigsten Kennzahlen im Gebäudeenergiegesetz (GEG) vorgestellt. Sie erhalten die notwendigen Formeln und Erklärungen, um den Primärenergiebedarf, den Transmissionswärmeverlust, den Erneuerbare-Energien-Anteil und den U-Wert zu verstehen und anzuwenden. Diese Kennzahlen sind entscheidend für die Beurteilung der Energieeffizienz von Gebäuden und für die Umsetzung der Vorgaben des GEG.