Einleitung
47 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Bestimme $x$, $\alpha$, $c$ und $\gamma$.
$\frac{x}{\sin(21^\circ)} = \frac{4,4}{\sin(28^\circ)}$
$\frac{3,7}{\sin(\alpha)} = \frac{2,3}{\sin(35^\circ)}$
$c^2 = 2^2 + 3^2 - 2\cdot 2\cdot 3\cdot \cos(66^\circ)$
$4^2 = 2^2 + 3^2 - 2\cdot 2\cdot 3 \cdot\cos(\gamma)$
Berechne aus den gegebenen Stücken des Dreiecks ABC die übrigen.
$\beta = 44^\circ$
$\gamma = 17^\circ$
$c = 17,9\,\mathrm{cm}$
$a = 12,9\,\mathrm{m}$
$b=6,6\,\mathrm{m}$
$\alpha = 50^\circ$
$a = 3\,\mathrm{dm}$
$b = 8,9\,\mathrm{dm}$
$\gamma = 122^\circ$
Ein dreieckiges Grundstück hat die Seitenlängen 100m, 73m und 121,5m.
Berechne die Maße der Winkel in den Grundstücksecken.
Zwei Kräfte von 168 N und 232 N greifen am gleichen Angriffspunkt an und bilden miteinander einen Winkel von 113°.
Berechne die resultierende Kraft.
Zwei Autos mit den Geschwindigkeiten $48\,\frac{km}{h}$ und $84\,\frac{km}{h}$ fahren gleichzeitig von einer Straßengabelung ($31^\circ$) geradlinig weg.
Wie weit kommen die beiden Autos jeweils in 17 Minuten?
Wie weit sind sie dann voneinander entfernt?
In der Ferne sieht Frau Winter ein Haus und möchte dessen Höhe bestimmen ohne sich viel anzustrengen. Sie misst dazu wie weit sie ihren Kopf nach oben neigen muss, um geradezu auf die Hausspitze zu blicken, geht dann ein paar Meter zurück und misst nochmal.
Zuerst misst Frau Winter einen Winkel von 22,3°.
Nachdem sie 35 Meter zurück gegangen ist, misst sie 12,2°.
Wie hoch ist das Haus?
(Körpergröße und eventuelle Unebenheiten des Bodens ignorieren.)
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Binomische Formeln
89 min, 11 Aufgaben #3120Alles rund um die binomischen Formeln. Voraussetzung ist das Auflösen von doppelten Klammern (doppeltes Distributivgesetz). Darauf aufbauend wird auf das Vereinfachen von Termen eingegangen bei denen die binomischen Formeln von einfach bis schwer zur Anwendung kommen. Danach wird der Spieß umgedreht und Terme mit den binomischen Formeln faktorisiert. Krönender Abschluss bilden Gleichungen bei denen man ... *trommelwirbel* ... binomische Formeln braucht.
Stammfunktionen und Flächeninhalte
76 min, 8 Aufgaben #8010Wie für das Thema üblich werden zunächst einfache Polynomfunktionen integriert und dann schwierigere Funktionen bei denen zunächst Potenz- und Wurzelgesetze angewendet werden müssen. Der Aufgabentyp mit gegebener Ableitung und einem Punkt die Ausgangsfunktion zu bestimmen ist auch dabei und die zweite Hälfte der Aufgaben behandelt die Flächenberechnung zwischen Graph und x-Achse. Dabei müssen zuerst die Nullstellen bestimmt werden. :)
Lernkontrolle Potenzen
39 min, 8 Aufgaben #0994Verschiedene Aufgaben zu Zehnerpotenzen. Zwei Textaufgaben inklusive. Bei den zwei letzten Aufgaben müssen mit Hilfe von Potenzgesetzen Terme vereinfacht werden.
Klausurvorbereitung - Analysis - NRW
15 min, 3 Aufgaben #1580Drei kleine verschiedene Aufgaben zur Differentialrechnung. Man muss Sachen berechnen und begründete Entscheidungen geben. Dafür werden Potenzfunktionen 3. Grades mit Nullstellen, Tangenten, Ableitungen und Verschiebungen von Funktionen benutzt.
Ableitungsfunktion
34 min, 8 Aufgaben #1588Der Differenzenquotient muss gebildet und Funktionen abgeleitet werden. Darüber hinaus muss eine Ausgangsfunktion gezeichnet und Funktionsgleichungen von Ausgangsfunktionen gebildet werden. Eine Aufgabe über die Differenzierbarkeit einer Betragsfunktion an einer bestimmten Stelle ist auch dabei.