Einleitung

Abituraufgabe zur Analysis für den Grundkurs mit 40 erreichbaren Bewertungseinheiten aus Berlin 2016.

53 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.

Aufgaben

Nach der Einnahme eines Medikaments geht der Wirkstoff des Medikaments in das Blut über, wobei sich die Konzentration des Wirkstoffs im Blut mit der Zeit verändert.

Die Konzentration wird für $ 0 \le t \le 6 $ durch die Funktion $ f(t) = \frac{1}{4}t^3 - 3t^2 + 9t $ beschrieben (Graph siehe Anlage). Dabei ist $ t $ die Zeit in Stunden seit Beginn der Einnahme und $ f(t) $ die Konzentration in $ \mu $g pro Liter.

Geben Sie anhand des Graphen die Zeitintervalle an, in denen die Konzentration des Wirkstoffs im Blut zunimmt und in denen sie abnimmt.

Das Medikament ist nur wirksam, wenn die Konzentration des Wirkstoffs im Blut mindestens 3,7\,$ \mu $g pro Liter beträgt.

Geben Sie ein Zeitintervall an, in dem das Medikament wirksam ist.

Berechnen Sie die Nullstellen von $ f $.

1

Geben Sie anhand des dargestellten Graphen die Koordinaten des Hochpunktes an.

Weisen Sie rechnerisch nach, dass die Konzentration des Wirkstoffs nach 6 Stunden ein Minimum erreicht.

2

Bestimmen Sie für den Zeitpunkt $ t = 4 $ die momentane Änderungsrate der Konzentration des Wirkstoffs im Blut.
Berechnen Sie den Zeitpunkt, in dem die Konzentration des Wirkstoffs im Blut am stärksten abnimmt.

3

Ein Pharmakonzern hat ein anderes Medikament entwickelt, bei dem die Konzentration des Wirkstoffs im Blut im Intervall $ \left[0;5\right] $ durch die Funktion $ k(t) = at^3 + bt^2 + 5t $ bestimmt werden kann.
Bekannt ist, dass bei der vorgesehenen Einnahme die Konzentration nach 5 Stunden wieder den Wert null erreicht und sich die Konzentration bei $ t = 5 $ nicht ändert, d.h. die Änderungsrate auf null sinkt.

Ermitteln Sie aus diesen Angaben die Parameter der Funktion $ k $.

( Zur Kontrolle: $ a = 0,2 $; $ b = -2 $.)

4

Die Änderungsraten der beiden Konzentrationen lassen sich anhand der Ableitungsfunktionen $ f' $ bzw. $ k' $ beschreiben.
Untersuchen Sie, ob es im Intervall $ [0;5] $ einen Zeitpunkt gibt, in dem die Änderungsraten der beiden Konzentrationen gleich sind.

5

Zeichnen Sie den Graphen der Funktion $ k $ in das gegebene Koordinatensystem.
Beschreiben Sie anhand der Graphen von $ f $ und $ k $ drei Unterschiede in der zeitlichen Entwicklung der Konzentration der Medikamente.

Der Pharmakonzern behauptet: Vom Medikament $ f $ wird etwa doppelt so viel Wirkstoff aufgenommen wie vom Medikament $ k $.

Erläutern Sie, wie diese Behauptung überprüft werden könnte.

PDF zum Drucken

Weitere Arbeitsblätter

Test über Vorkenntnisse zu ganzrationalen Funktionen

31 min, 4 Aufgaben #1515

Originaler Test mit 40 erreichbaren Punkten.

Klassenarbeit Terme und Gleichungen

26 min, 5 Aufgaben #3750

Klassenarbeit einer 8. Klasse auf einem Berliner Gymnasium. Es müssen Terme vereinfacht und Gleichungen gelöst werden. Dabei müssen Klammern aufgelöst, binomische Formeln angewendet und Gleichungen aus Texten aufgestellt werden.

IT Vorschau-Demnächst

0 min, 4 Aufgaben #7778

Cooles Blatt.

Lichtkunst Abitur GK Hamburg

61 min, 6 Aufgaben #1945

Abituraufgabe aus der zentralen schriftlichen Abiturprüfung 2005 im Fach Mathematik aus Hamburg für den Grundkurs mit insgesamt 100 erreichbaren Punkten.

Kleine vermischte Übungen - Klasse 8

50 min, 12 Aufgaben #5200

Bunt gemischte Textaufgaben zu verschiedenen Themen der 8. Klasse und darüber hinaus. Etwas zum Knobeln für Schüler am Anfang des Schuljahres.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum