Einleitung

Es gibt vier grundlegende Aufgabentypen bei Bernoulli-Ketten. Diese werden hier einfach straightforward geübt.

43 Minuten Erklärungen in 4 Aufgaben von Koonys Schule.

Aufgaben

1

Berechne die Trefferwahrscheinlichkeit dafür, dass bei n Durchgängen das Ergebnis mit der Wahrscheinlichkeit p genau k-mal eintritt.

n = 5, p = 30 %, k = 2

n = 9, p = 40 %, k = 5

n = 10, p = 30 %, k = 5

n = 5, p = 70 %, k = 2

n = 9, p = 60 %, k = 5

n = 10, p = 70 %, k = 5

2

Berechne die Trefferwahrscheinlichkeit dafür, dass bei n Durchgängen bis zu k-mal das Ergebnis mit der Wahrscheinlichkeit p eintrifft.

n = 12, p = 10 %, k = 3

n = 6, p = 20 %, k = 1

n = 8, p = 10 %, k = 3

n = 12, p = 90 %, k = 9

n = 6, p = 80 %, k = 5

n = 8, p = 90 %, k = 5

3

Berechne die Trefferwahrscheinlichkeit dafür, dass bei n Durchgängen das Ergebnis mit der Wahrscheinlichkeit p mindestens k-mal eintrifft.

n = 16, p = 40 %, k = 4

n = 11, p = 10 %, k = 11

n = 8, p = 20 %, k = 3

n = 16, p = 60 %, k = 4

n = 11, p = 90 %, k = 11

n = 8, p = 80 %, k = 3

4

Berechne die Trefferwahrscheinlichkeit dafür, dass bei n Durchgängen das Ergebnis mit der Wahrscheinlichkeit p mindestens $k_1$-mal und höchstens $k_2$-mal eintrifft.

n = 19, p = 40 %,
P(4$\le$X$\le$15)

n = 12, p = 20 %,
P(3$\le$X$\le$9)

n = 20, p = 10 %,
P(4$\le$X$\le$16)

n = 19, p = 60 %,
P(5$\le$X$\le$14)

n = 12, p = 80 %,
P(3$\le$X$\le$9)

n = 20, p = 90 %,
P(4$\le$X$\le$16)

PDF zum Drucken

Weitere Arbeitsblätter

Übungsaufgaben zur Wahrscheinlichkeitsrechnung

29 min, 4 Aufgaben #1656

Gewinnerwartung und Wahrscheinlichkeiten bei einem bzw. zwei Würfeln. Die Aufgaben beschäftigen sich hauptsächlich mit Baumdiagrammen und damit, aus dem Text herauszufinden was genau man zählen muss.

Quadratische Gleichungen

74 min, 7 Aufgaben #0062

Es werden zunächst quadratische Gleichungen sowohl über die Scheitelpunktsform als auch mit der pq-Formel gelöst. Im Anschluss gibt es Textaufgaben bei denen das Wissen benötigt wird.

Terme vereinfachen

35 min, 4 Aufgaben #2832

Übungen zum Vereinfachen von Termen durch die vier Grundrechenarten: Addition, Subtraktion, Multiplikation und Division. Unter anderem müssen gleichartige Glieder zusammengefasst und Klammern aufgelöst werden.

Wurzelterme vereinfachen ohne Taschenrechner

41 min, 13 Aufgaben #0990

Viele verschiedene Aufgaben zum Zusammenfassen von Wurzeltermen. Dabei werden neben den Wurzelgesetzen auch binomische Formeln benötigt.

Klausur Differentialrechnung

42 min, 5 Aufgaben #1565

Originale Klausur mit 38 Punkten. Das Verständnis zu den Begrifflichkeiten des Themas muss gezeigt, ein Grenzwert mit Hilfe des Differentialquotienten berechnen und Potenzfunktionen mit Ableitungsregeln differenziert (abgeleitet) werden. Zusätzlich kommt das Berührproblem und das Tangentenproblem sowie eine Anwendungsaufgabe vor.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum