Einleitung

Vektoren, Geraden und Ebenen im dreidimensionalen Raum.
Die Aufgaben sind bunt gemischt. Angefangen bei Winkeln und Flächeninhalten über fehlende Koordinaten hin zu Abstandsberechnungen, Seitenverhältnissen, Ebenen und sogar Kugeln.

71 Minuten Erklärungen in 5 Aufgaben von Koonys Schule.

Aufgaben

1

Gegeben sind die Punkte $\RPUNKT{A}{5}{0}{2}$, $\RPUNKT{B}{3}{1}{4}$ und $\RPUNKT{C}{5}{3}{5}$ im $ \RR^3 $.

Zeigen Sie, dass das Dreieck ABC rechtwinklig und gleichschenklig ist.

Bestimmen Sie den Flächeninhalt $\mathrm{F_{\Delta ABC}}$ des Dreiecks ABC.

Bestimmen Sie einen Punkt S so, dass das Volumen der Pyramide ABCS das Volumen $V = 9\,\mathrm{VE}$ besitzt.

2

Gegeben sind die Punkt $ \RPUNKT{A}{1}{2}{-3} $, $ \RPUNKT{B}{3}{5}{3} $ und $ \RPUNKT{C}{9}{7}{0} $ im $\RR^3$.

Zeigen Sie, dass sich das Dreieck ABC zu einem Quadrat ABCD ergänzen lässt. Bestimmen Sie die Koordinaten von D und den Flächeninhalt dieses Quadrates.

Erweitern Sie das Quadrat ABCD zu einem Würfel ABCDEFGH. Bestimmen Sie die Koordinaten der Eckpunkte E, F, G und H sowie das Volumen dieses Würfels.

3

Gegeben sind die Punkte $ \RPUNKT{A}{-3}{-2}{4} $, $ \RPUNKT{B}{5}{4}{0} $ und $ \RPUNKT{P}{2}{5}{10} $ im $ \RR^3 $.

Zeigen Sie, dass die drei Punkte A, B und P nicht auf einer Geraden liegen.

Bestimmen Sie den Abstand des Punktes P von der Geraden AB.

4

Gegeben sind die Punkte $ \RPUNKT{A}{1}{3}{4} $, $ \RPUNKT{B}{4}{6}{1} $ und $ \RPUNKT{C}{-2}{0}{-5} $ im $ \RR^3 $.

Bestimmen Sie die Größe des Winkels $ \alpha = \sphericalangle $BAC im Dreieck ABC.

$ \mathrm{M}_a $ ist die Seitenmitte der Seite $a$ im Dreieck ABC. Bestimmen Sie die Koordinaten von $ \mathrm{M_a} $ und die Länge der Seitenhalbierenden $ s_a $ im Dreieck ABC.

Bestimmen Sie die Koordinaten des Fußpunktes F der Höhe $ h_c $ im Dreieck ABC. In welchem Verhältnis teilt F die Strecke [AB]?

Begründen Sie, dass $ \RPUNKT{S}{1}{3}{1} $ der Schnittpunkt von $s_a$ und $h_c$ ist.

Wie hätte man die Koordinaten des Schnittpunktes von $s_a$ und $h_c$ rechnerisch ermitteln können?

5

Gegeben sind die Punkte $ \RPUNKT{A}{1}{2}{3} $, $ \RPUNKT{B}{3}{0}{4} $, $ \RPUNKT{C}{5}{1}{2} $ und $ \RPUNKT{M}{2}{4}{5} $ im $ \RR^3 $.

Berechnen Sie die Größe der Winkel $\sphericalangle$BAM und $\sphericalangle$CAM und $\sphericalangle$BAC.

Begründen Sie, dass der Punkt M nicht in der durch A, B und C festgelegten Ebene E liegt. Welchen Abstand hat M von dieser Ebene E?

Die Kugel k(M, r=5) schneidet die Ebene E in einem Kreis mit dem Radius $\rho$. Berechnen Sie die Größe von $\rho$.

PDF zum Drucken

Weitere Arbeitsblätter

Lineare Gleichungssysteme lösen

62 min, 7 Aufgaben #3820

Zunächst eine Vorbereitungsaufgabe. Im Anschluss Aufgaben zum Gleichsetzungsverfahren, Einsetzungsverfahren und Additionsverfahren. Danach noch Aufgaben zu den 3 möglichen Fällen: eine Lösung, keine Lösung oder unendlich vieler Lösungen. Am Ende noch Übungen bei denen auch Brüche vorkommen.

Dezimalbrüche

85 min, 7 Aufgaben #1010

In verschiedenen Aufgaben werden gebrochene Zahlen zwischen Dezimalzahlen und echten Brüchen hin und her umgewandelt.

Kegel, Pyramide, Kugel

27 min, 5 Aufgaben #9540

Die Formeln zur Oberflächen- und Volumenberechnung bei Kegeln, Pyramiden und Kugel kommen zur Anwendung. Es kommt dabei u.a. auch der Dreisatz sowie die Dichte-Formel zur Anwendung.

Quadratische Funktionen

53 min, 6 Aufgaben #0070

Eine Einführung in quadratische Funktionen. Begonnen wird mit der Normalparabel. Das wird weiter und weiter ausgebaut bis hin zur Scheitelpunktsform und beendet mit der Übung diese in die allgemeine Form zu überführen. Ausblick könnte die quadratische Ergänzung sein.

Klassenarbeit Terme und Gleichungen

26 min, 5 Aufgaben #3750

Klassenarbeit einer 8. Klasse auf einem Berliner Gymnasium. Es müssen Terme vereinfacht und Gleichungen gelöst werden. Dabei müssen Klammern aufgelöst, binomische Formeln angewendet und Gleichungen aus Texten aufgestellt werden.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum