Einleitung

Alles rund um die binomischen Formeln. Voraussetzung ist das Auflösen von doppelten Klammern (doppeltes Distributivgesetz).
Darauf aufbauend wird auf das Vereinfachen von Termen eingegangen bei denen die binomischen Formeln von einfach bis schwer zur Anwendung kommen.
Danach wird der Spieß umgedreht und Terme mit den binomischen Formeln faktorisiert.
Krönender Abschluss bilden Gleichungen bei denen man ... *trommelwirbel* ... binomische Formeln braucht.

89 Minuten Erklärungen in 14 Aufgaben von Koonys Schule.

Aufgaben

Löse die Klammern auf und fasse zusammen.

1

$ (x+y)^2 $

$ (x-y)^2 $

$ (x+y)(x-y) $

2

$ (x+2)^2 $

$ (x-1)^2 $

$ (x+4)(x-4) $

3

$ (2x+3)^2$

$ (x-2y)^2$

$ (2x+z)(2x-z)$

4

$ (-4+x)^2$

$ (x+(-3))^2$

$ (-2-x)^2$

$ (1-(-x))^2$

5

$ (3x^2 + 4y)^2$

$ (4a^3 - 3b)^2$

$ (p^2-q^2)(p^2+q^2)$

6

$ (a+3b)^2 + (a+b)(4a+b)$

$ (4x+y)^2 - (x+y)(3x+y)$

$ (0,5x+0,3y)^2 - (0,2x-0,4y)$

$ \left(\frac{a}{2} - 2b\right)^2 + \left(6a - \frac{b}{3}\right)^2$

Faktorisiere mit Hilfe der binomischen Formeln.

7

$ a^2 + 2ab + b^2 $

$ 9-2\cdot 3x + x^2 $

$ 36-y^2 $

8

$ 9a^2 + 6ab + b^2 $

$ 49y^2-14yx+x^2 $

$ 0,36-a^2 $

9

$ \frac{9}{16} - c^2 $

$ \frac{4}{9} + \frac{4}{3}c + c^2 $

$ 0,16a^2 - 0,48ab + 0,36b^2 $

$ 144z^2 - 360zy + 225y^2 $

Bestimme die Lösungsmenge.

10

$ (x+5)^2 = (x-4)^2$

$ (x-7)(x+7) = (x+8)^2 - 1$

$ (x-11)^2 - (x+9)^2 = 0$

$ \left(x+\frac{1}{3}\right)^2 - \left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right) + \frac{5}{36} = 0$

11

$ (x+1)^2 + (x+4)^2 = (x+2)^2 + (x+3)^2 - 2x $

$ (x-4)^2 + (2x-1)^2 + (3x+5) = 5x^2 $

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Klasse 8 Terme


Weitere Arbeitsblätter

Hemden mit Mängeln Abitur LK Berlin 2011

32 min, 6 Aufgaben #1720

Original Abiturprüfung für den Leistungskurs aus Berlin. Die Aufgabe dreht sich rund um Hypothesentests. Kumulierte Binomialverteilung und Standardnormalverteilung, sowie gesunder Menschenverstand werden gebraucht.

Dezimalbrüche

85 min, 7 Aufgaben #1010

In verschiedenen Aufgaben werden gebrochene Zahlen zwischen Dezimalzahlen und echten Brüchen hin und her umgewandelt.

BBR - Vergleichsarbeit Mathematik

59 min, 14 Aufgaben #2508

Die Vergleichende Arbeit 2015 im Fach Mathematik zum Erwerb der Berufsbildungsreife bzw. des Hauptschulabschlusses. Bearbeitungszeit: 90 Minuten. Zugelassene Hilfsmittel: Formelübersicht und wissenschaftlicher nicht grafikfähiger Standard-Taschenrechner.

Lernkontrolle Potenzen

39 min, 8 Aufgaben #0994

Verschiedene Aufgaben zu Zehnerpotenzen. Zwei Textaufgaben inklusive. Bei den zwei letzten Aufgaben müssen mit Hilfe von Potenzgesetzen Terme vereinfacht werden.

Pythagoras - Anwendungen

49 min, 6 Aufgaben #0040

Anwendungsaufgaben mit dem Satz des Pythagoras. Unter anderem werden Diagonale von Quadrat und Würfel berechnet, Berechnungen am gleichschenkligen Dreieck, Pyramide und Walmdach durchgeführt u.v.m.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum