Einleitung

Alles rund um die binomischen Formeln. Voraussetzung ist das Auflösen von doppelten Klammern (doppeltes Distributivgesetz).
Darauf aufbauend wird auf das Vereinfachen von Termen eingegangen bei denen die binomischen Formeln von einfach bis schwer zur Anwendung kommen.
Danach wird der Spieß umgedreht und Terme mit den binomischen Formeln faktorisiert.
Krönender Abschluss bilden Gleichungen bei denen man ... *trommelwirbel* ... binomische Formeln braucht.

89 Minuten Erklärungen in 14 Aufgaben von Koonys Schule.

Aufgaben

Löse die Klammern auf und fasse zusammen.

1

$ (x+y)^2 $

$ (x-y)^2 $

$ (x+y)(x-y) $

2

$ (x+2)^2 $

$ (x-1)^2 $

$ (x+4)(x-4) $

3

$ (2x+3)^2$

$ (x-2y)^2$

$ (2x+z)(2x-z)$

4

$ (-4+x)^2$

$ (x+(-3))^2$

$ (-2-x)^2$

$ (1-(-x))^2$

5

$ (3x^2 + 4y)^2$

$ (4a^3 - 3b)^2$

$ (p^2-q^2)(p^2+q^2)$

6

$ (a+3b)^2 + (a+b)(4a+b)$

$ (4x+y)^2 - (x+y)(3x+y)$

$ (0,5x+0,3y)^2 - (0,2x-0,4y)$

$ \left(\frac{a}{2} - 2b\right)^2 + \left(6a - \frac{b}{3}\right)^2$

Faktorisiere mit Hilfe der binomischen Formeln.

7

$ a^2 + 2ab + b^2 $

$ 9-2\cdot 3x + x^2 $

$ 36-y^2 $

8

$ 9a^2 + 6ab + b^2 $

$ 49y^2-14yx+x^2 $

$ 0,36-a^2 $

9

$ \frac{9}{16} - c^2 $

$ \frac{4}{9} + \frac{4}{3}c + c^2 $

$ 0,16a^2 - 0,48ab + 0,36b^2 $

$ 144z^2 - 360zy + 225y^2 $

Bestimme die Lösungsmenge.

10

$ (x+5)^2 = (x-4)^2$

$ (x-7)(x+7) = (x+8)^2 - 1$

$ (x-11)^2 - (x+9)^2 = 0$

$ \left(x+\frac{1}{3}\right)^2 - \left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right) + \frac{5}{36} = 0$

11

$ (x+1)^2 + (x+4)^2 = (x+2)^2 + (x+3)^2 - 2x $

$ (x-4)^2 + (2x-1)^2 + (3x+5) = 5x^2 $

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Klasse 8 Terme


Weitere Arbeitsblätter

Kegel, Pyramide, Kugel

27 min, 5 Aufgaben #9540

Die Formeln zur Oberflächen- und Volumenberechnung bei Kegeln, Pyramiden und Kugel kommen zur Anwendung. Es kommt dabei u.a. auch der Dreisatz sowie die Dichte-Formel zur Anwendung.

Wochenübung - besondere quadratische Gleichungen

89 min, 6 Aufgaben #0065

Für sechs Tage gibt es täglich 4 Aufgaben. Eine Bruchgleichung, eine biquadratische Gleichung, eine Gleichung 3. Grades ohne Absolutglied und eine zum Knobeln.

Gartenhaus Abitur GK Berlin 2016

62 min, 6 Aufgaben #1981

Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.

Gauß Verfahren

84 min, 7 Aufgaben #1777

Für lineare Gleichungssysteme mit mehr als nur zwei Gleichungen und Unbekannten gibt es einen Algorithmus mit dem man bequemer zur Lösung kommt. Dieser wird hier zunächst gezeigt und dann bei Textaufgaben zur Anwendung gebracht.

Abschlussarbeit Klasse 9 ohne Taschenrechner

39 min, 8 Aufgaben #2850

Aufgaben quer durch die 9. Klasse für Profis. Ohne Taschenrechner knifflige Terme berechnen. Außerdem Prozentrechnung, Flächeninhalte, Gleichungen umstellen, Funktionen, Textgleichungen, Strahlensätze und Wahrscheinlichkeiten. Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum