Einleitung
Einführung in das Umstellen von linearen Gleichungen. Die Aufgaben beginnen ganz einfach und werden dann nach und nach schwerer.
Am Ende hat man gelernt: Klammern auflösen, links und rechts zusammenfassen, alles mit x auf die eine und alles ohne x auf die andere Seite. Zum Schluss noch durch die Zahl vor dem x teilen und fertig ist man.
58 Minuten Erklärungen in 5 Aufgaben von Koonys Schule.
Aufgaben
Bestimme die Lösungsmenge.
$x + 7 = 10$
$x + 11 = 11$
$x + 25 = 11$
$x+0,6 = 1,3$
$x + \frac{2}{3} = \frac{1}{6}$
$x - 6 = 18$
$x - 5 = -5$
$x - 5 = 5$
$x - \frac{5}{6} = \frac{1}{3}$
Bestimme die Lösungsmenge
$4x = 48$
$7x = -56$
$-11x = -88$
$\frac{1}{7}x = -5$
$\frac{1}{5}x = \frac{7}{10}$
$5u = -55$
$\frac{1}{2}v = \frac{3}{4}$
$-\frac{7}{9}y = -\frac{14}{3}$
$\frac{3}{4}x = -\frac{5}{8}$
Bestimme die Lösungsmenge
$3x + 11 = 20$
$9x-7 = 11$
$17-2x = 27$
$5x + 43 = 13$
$-8x+30 = 6$
$\frac{1}{5}x - 5 = -12$
$5 = 4a - 19$
$10 - \frac{1}{3}x = 6$
$72 - 8b = 64$
Bestimme die Lösungsmenge
$2x + 7x = 45$
$5x - 3x = 18$
$7x = 4x + 15$
$9x = 39 - 4x$
$8x + 3 = 5x + 24$
$21x + 17 = 2x + 72 + 8x$
Bestimme die Lösungsmenge
$16x + 19 = 5(4 + 3x)$
$3(17 + 8x) = 70x - 87$
$15x + 7(8 + 3x) = 15x + 182$
$7x + (x+8)\cdot3 = 4x$
$4(y-3)-2y = 5(3y+1)$
$7(2z+1)+5z = 3(8z-3)$
$4x-15(x-1)=2(6-3x)$
$(4x-3)\cdot5 - 6x = -4(5+9x)$
Weitere Arbeitsblätter
Binomische Formeln
89 min, 11 Aufgaben #3120Alles rund um die binomischen Formeln. Voraussetzung ist das Auflösen von doppelten Klammern (doppeltes Distributivgesetz). Darauf aufbauend wird auf das Vereinfachen von Termen eingegangen bei denen die binomischen Formeln von einfach bis schwer zur Anwendung kommen. Danach wird der Spieß umgedreht und Terme mit den binomischen Formeln faktorisiert. Krönender Abschluss bilden Gleichungen bei denen man ... *trommelwirbel* ... binomische Formeln braucht.
Polynomdivision und mittlere Änderungsrate
35 min, 6 Aufgaben #1551Klausurvorbereitung zu Potenzfunktionen mit Symmetrieeigenschaften, Polynomdivision, Monotonie und mittlerer Änderungsrate.
Extremwertaufgaben
80 min, 8 Aufgaben #1597Acht verschiedene Aufgaben mit immer derselben Fragen: wann wird's maximal bzw. minimal? Sei es mit einem Schiff, in einer Spielzeugfabrik, auf einer Wiese oder als Motorradfahrer: überall muss zuerst eine Hauptbedingung und eine Nebenbedingung aufgestellt und dann zusammen in eine Funktion gepackt werden. Letztlich wird von dieser dann jedes mal der Extrempunkt bestimmt.
Übung zu Bewegungen im magnetischem Feld
54 min, 4 Aufgaben #6116Aufgaben mit Elektronen und Protonen, die sich in Magnetfeldern im Kreis bewegen oder abgelenkt werden. Die Lorentzkraft wird dabei der Zentripetalkraft oder der elektrischen Kraft gleichgesetzt.
Weidezelt Abitur GK Berlin 2016
64 min, 6 Aufgaben #1611Abituraufgabe zur Analysis für den Grundkurs mit 40 erreichbaren Bewertungseinheiten aus Berlin 2016. Neben Nullstellen, Extrempunkten und Wendepunkten sind außerdem dabei: Extremalproblem, Rekonstruktion einer quadratischen Funktion und Flächenberechnung.