Einleitung
Dieses Arbeitsblatt führt an lineare Funktionen heran.
Weiterführend kann das Thema zum Beispiel mit Textaufgaben vertieft oder auf lineare Gleichungssysteme erweitert werden.
54 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Bestimme $ x $.
$ 23x + 8 + 2x = 2x + 10 $
$ 25x + 8 = 10 - 2x $
$ 8x + 3 = 5x + 54 $
$ -3x - 1 = -4x-2 $
Wandle in die Form $ y = m\cdot x + n $ um.
$ -8x + 4y = 20 $
$ 25x-5y = -15 $
$ -3x-4y = 12 $
$ \frac{3}{4}x = \frac{1}{10} - \frac{1}{8}y $
Fülle die Wertetabellen aus, zeichne die Punkte in ein Koordinatensystem und verbinde. Lies den Schnittpunkt ab.
$x$ | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
$f(x)=2x-3$ |
$x$ | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
$g(x)=-3x+7$ |
Gegeben ist eine Funktion und Punkte, die zu dieser Funktion gehören. Leider fehlt immer eine Koordinate. Berechne diese.
$ f(x) = 7x - 3 $
$ \EPUNKT{P}{-2}{y_\mathrm{P}} $, $ \EPUNKT{Q}{x_\mathrm{Q}}{11} $, $ \EPUNKT{R}{0}{y_\mathrm{R}} $
$ g(x) = -14x + 2 $
$ \EPUNKT{S}{-5}{y_\mathrm{S}} $, $ \EPUNKT{T}{x_\mathrm{T}}{-26} $, $ \EPUNKT{U}{x_\mathrm{U}}{0} $
Zeichne die zwei Funktionen in ein Koordinatensystem.
Berechne jeweils den Schnittpunkt der beiden Funktionen sowie deren Schnittpunkt mit der $ x $-Achse (Nullstelle) und $ y $-Achse.
$ f(x) = -4x + 2 $
$ g(x) = 8x - 2 $
$ h(x) = 9x + 10 $
$ k(x) = -5x - 2 $
Ein Taxifahrer verlangt für einen gefahrenen Kilometer 3€ und eine Grundgebühr von 5€.
Stelle die Kosten in Abhängigkeit der gefahrenen Kilometer graphisch dar.
Berechne den Preis für eine 12km lange Fahrt.
Wie weit kommt man mit 100€?
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Kleine vermischte Übungen - Klasse 8
50 min, 12 Aufgaben #5200Bunt gemischte Textaufgaben zu verschiedenen Themen der 8. Klasse und darüber hinaus. Etwas zum Knobeln für Schüler am Anfang des Schuljahres.
Klammern auflösen
35 min, 8 Aufgaben #3336Das Vereinfachen von Termen mit Klammern wird Stück für Stück gezeigt. Mit dabei sind Minusklammern, das einfache und das doppelte Distributivgesetz. Nach den Aufgaben ist man fachlich soweit sich als nächstes an die binomischen Formeln vagen zu können.
Quadratische Gleichungen
40 min, 5 Aufgaben #0060Die Aufgaben führen schrittweise an das Lösen von reinquadratischen Gleichungen verschiedener Formen heran.
Ableitungsfunktion
34 min, 8 Aufgaben #1588Der Differenzenquotient muss gebildet und Funktionen abgeleitet werden. Darüber hinaus muss eine Ausgangsfunktion gezeichnet und Funktionsgleichungen von Ausgangsfunktionen gebildet werden. Eine Aufgabe über die Differenzierbarkeit einer Betragsfunktion an einer bestimmten Stelle ist auch dabei.