Einleitung
Dieses Arbeitsblatt führt an lineare Funktionen heran.
Weiterführend kann das Thema zum Beispiel mit Textaufgaben vertieft oder auf lineare Gleichungssysteme erweitert werden.
54 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Bestimme $ x $.
$ 23x + 8 + 2x = 2x + 10 $
$ 25x + 8 = 10 - 2x $
$ 8x + 3 = 5x + 54 $
$ -3x - 1 = -4x-2 $
Wandle in die Form $ y = m\cdot x + n $ um.
$ -8x + 4y = 20 $
$ 25x-5y = -15 $
$ -3x-4y = 12 $
$ \frac{3}{4}x = \frac{1}{10} - \frac{1}{8}y $
Fülle die Wertetabellen aus, zeichne die Punkte in ein Koordinatensystem und verbinde. Lies den Schnittpunkt ab.
$x$ | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
$f(x)=2x-3$ |
$x$ | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
$g(x)=-3x+7$ |
Gegeben ist eine Funktion und Punkte, die zu dieser Funktion gehören. Leider fehlt immer eine Koordinate. Berechne diese.
$ f(x) = 7x - 3 $
$ \EPUNKT{P}{-2}{y_\mathrm{P}} $, $ \EPUNKT{Q}{x_\mathrm{Q}}{11} $, $ \EPUNKT{R}{0}{y_\mathrm{R}} $
$ g(x) = -14x + 2 $
$ \EPUNKT{S}{-5}{y_\mathrm{S}} $, $ \EPUNKT{T}{x_\mathrm{T}}{-26} $, $ \EPUNKT{U}{x_\mathrm{U}}{0} $
Zeichne die zwei Funktionen in ein Koordinatensystem.
Berechne jeweils den Schnittpunkt der beiden Funktionen sowie deren Schnittpunkt mit der $ x $-Achse (Nullstelle) und $ y $-Achse.
$ f(x) = -4x + 2 $
$ g(x) = 8x - 2 $
$ h(x) = 9x + 10 $
$ k(x) = -5x - 2 $
Ein Taxifahrer verlangt für einen gefahrenen Kilometer 3€ und eine Grundgebühr von 5€.
Stelle die Kosten in Abhängigkeit der gefahrenen Kilometer graphisch dar.
Berechne den Preis für eine 12km lange Fahrt.
Wie weit kommt man mit 100€?
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Gauß Verfahren
84 min, 7 Aufgaben #1777Für lineare Gleichungssysteme mit mehr als nur zwei Gleichungen und Unbekannten gibt es einen Algorithmus mit dem man bequemer zur Lösung kommt. Dieser wird hier zunächst gezeigt und dann bei Textaufgaben zur Anwendung gebracht.
Klammern auflösen
56 min, 9 Aufgaben #3337Alle Möglichkeiten von Klammern auf einem Blatt. Mit diesen Übungen kann beim Auflösen von Klammern gar nichts mehr schief laufen.
Abzählverfahren
54 min, 7 Aufgaben #1650Aufgaben zur Kombinatorik mit Sitzplätzen, Fußballturnieren, Silvester und defekten Batterien. Man benötigt die Abzählverfahren (mit oder ohne Reihenfolge, mit oder ohne Wiederholung). Das Lotto-Modell und Gewinnerwartung sind auch dabei.
Einführung Terme
65 min, 8 Aufgaben #2826Erste Aufgaben zu Termen. Termwerte berechen, Terme vergleichen und Textgleichungen in beide Richtungen: sowohl Gleichungen aus Texten aufstellen aber auch Texte basierend auf Gleichungen verfassen. Die Hälfte der Aufgaben beschäftigt sich mit dem Zusammenfassen von Termen.
BBR - Vergleichsarbeit Mathematik
59 min, 14 Aufgaben #2508Die Vergleichende Arbeit 2015 im Fach Mathematik zum Erwerb der Berufsbildungsreife bzw. des Hauptschulabschlusses. Bearbeitungszeit: 90 Minuten. Zugelassene Hilfsmittel: Formelübersicht und wissenschaftlicher nicht grafikfähiger Standard-Taschenrechner.