Einleitung

Sinus, Kosinus und Tangens von leicht bis schwer.
Zunächst Aufgaben mit den Gleichungen und all ihren Varianten. Danach Standard-Aufgaben an rechtwinkligen Dreiecken und die zweite Hälfte sind Textaufgaben bei denen das gleiche noch einmal drankommt mit dem gewissen Etwas, das anspruchsvolle Aufgaben ausmacht.

41 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.

Aufgaben

1

Bestimme die Werte $x$, $y$ und $z$, sowie die Winkelgrößen $\alpha$, $\beta$ und $\gamma$.

Runde auf Tausendstel.

$\sin(30^\circ) = x$

$\cos(30^\circ) = y$

$\tan(30^\circ) = z$

$\sin(\alpha) = 0,149$

$\cos(\beta) = 0,149$

$\tan(\gamma) = 0,149$

2

Bestimme die Unbekannte.

$\sin(44^\circ) = \frac{a}{8}$

$\cos(23^\circ) = \frac{b}{9}$

$\tan(65^\circ) = \frac{c}{7}$

$\sin(56^\circ) = \frac{4}{c_1}$

$\cos(37^\circ) = \frac{3}{c_2}$

$\tan(42^\circ) = \frac{6}{c_3}$

3

Berechne die fehlenden Stücke des rechtwinkligen Dreiecks ABC.

$b = 1,7\,\mathrm{cm}$, $\beta = 40^\circ$, $\alpha = 90^\circ$

$c = 3,3\,\mathrm{km}$, $a = 6,2\,\mathrm{km}$, $\beta = 90^\circ$

4

Eine 6,7m lange Leiter wird an einen Baum gelehnt. Der Fuß der Leiter steht dabei 2,1m vor dem Baum.

Bestimme die Größe des Neigungswinkels zwischen der Leiter und dem waagerechten Boden.

Wie weit müsste der Fuß der Leiter vom Baum entfernt sein, damit ein Neigungswinkel von $47^\circ$ vorliegt?

5

Eine Seilbahn überwindet auf einer Strecke von 500m eine Höhendifferenz von 130m.

Wie groß ist der Steigungswinkel?

Die Seilbahn bewegt sich mit 7$\,\frac{km}{h}$. Wie viele Minuten ist sie unterwegs?

6

Von einem 200m entfernten Kirchturm wird mit Hilfe eines Theodoliten der Höhenwinkel $\alpha = 47^\circ$ gemessen. Der Beobachtungspunkt liegt 1,5m höher als der Fußpunkt des Turmes.

Wie hoch ist der Turm?

Wie lang wäre eine Seilbahn vom Beobachtungspunkt zur Spitze des Kirchturms?

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Klasse 10 Trigonometrie


Weitere Arbeitsblätter

Binomische Formeln

89 min, 11 Aufgaben #3120

Alles rund um die binomischen Formeln. Voraussetzung ist das Auflösen von doppelten Klammern (doppeltes Distributivgesetz). Darauf aufbauend wird auf das Vereinfachen von Termen eingegangen bei denen die binomischen Formeln von einfach bis schwer zur Anwendung kommen. Danach wird der Spieß umgedreht und Terme mit den binomischen Formeln faktorisiert. Krönender Abschluss bilden Gleichungen bei denen man ... *trommelwirbel* ... binomische Formeln braucht.

Mathematische Kompetenzen - Zufall

15 min, 6 Aufgaben #0008

Ein Sachverhalt aus dem Themengebiet Daten und Zufall (Leitidee 5) wird in verschiedene Aufgaben gepackt, die jeweils einen Schwerpunkt bezüglich der mathematischen Kompetenzen besitzen.

Übung zu Bewegungen im magnetischem Feld

54 min, 4 Aufgaben #6116

Aufgaben mit Elektronen und Protonen, die sich in Magnetfeldern im Kreis bewegen oder abgelenkt werden. Die Lorentzkraft wird dabei der Zentripetalkraft oder der elektrischen Kraft gleichgesetzt.

Abschlussarbeit Klasse 9 ohne Taschenrechner

39 min, 8 Aufgaben #2850

Aufgaben quer durch die 9. Klasse für Profis. Ohne Taschenrechner knifflige Terme berechnen. Außerdem Prozentrechnung, Flächeninhalte, Gleichungen umstellen, Funktionen, Textgleichungen, Strahlensätze und Wahrscheinlichkeiten. Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.

Klammern auflösen

51 min, 5 Aufgaben #3335

Aufgaben zum Vereinfachen von Termen mit Klammern. Zunächst Terme mit Minusklammern, dann welche mit doppelten Klammern (doppeltes Distributivgesetz). Am Ende, so ganz nebenbei, die binomischen Formeln und der ganze Spaß rückwärts: das Ausklammern.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum